OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 2 — Jan. 10, 2000
  • pp: 284–292

Robust spatiotemporal quadrature filter for multiphase stepping

Mariano Rivera, Jose L. Marroquin, Salvador Botello, and Manuel Servín  »View Author Affiliations

Applied Optics, Vol. 39, Issue 2, pp. 284-292 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A robust algorithm for phase recovery from multi-phase-stepping images is presented. This algorithm is based on the minimization of an energy (cost) functional and is equivalent to the simultaneous application of a fixed temporal quadrature filter and a spatial adaptive quadrature filter to the phase-stepping pattern ensemble. The algorithm, believed to be new, is specially suited for those applications in which a large number of phase-stepping images may be obtained, e.g., profilometry with a computer-controlled fringe projector. We discuss the selection of parameter values and present examples of its performance in both synthetic and real image sequences.

© 2000 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3190) Image processing : Inverse problems
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

Original Manuscript: April 15, 1999
Revised Manuscript: August 31, 1999
Published: January 10, 2000

Mariano Rivera, Jose L. Marroquin, Salvador Botello, and Manuel Servín, "Robust spatiotemporal quadrature filter for multiphase stepping," Appl. Opt. 39, 284-292 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Schmit, K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649 (1996). [CrossRef] [PubMed]
  2. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonsinuosoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A. 12, 761–768 (1995). [CrossRef]
  3. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A. 14, 918–930 (1997). [CrossRef]
  4. K. Hibino, “Susceptibility of error-compensating algorithms to random noise in phase-shifting interferometry,” Appl. Opt. 36, (1997).
  5. Y. Surrel, “Design of algorithms for phase measurements by use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  6. Y. Surrel, “Extended averanging and data windowing techniques in phase-stepping measurements: an approach using the characteristics polynomial theory,” Opt. Eng. 37, 2314–2319 (1998). [CrossRef]
  7. P. de Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of data-sampling window,” Appl. Opt. 34, 4723–4730 (1995). [CrossRef]
  8. P. de Groot, “101-frame algorithm for phase-shifting interferometry,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 283–292 (1997). [CrossRef]
  9. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  10. J. L. Marroquin, “Robust quadrature filters,” J. Opt. Soc. Am. A 14, 779–791 (1997). [CrossRef]
  11. J. M. Huntley, H. Sander, “Temporal phase-uwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  12. M. Rivera, J. L. Marroquin, M. Servín, R. Rodriguez-Vera, “Fast algorithm for intergrating inconsistent gradient fields,” Appl. Opt. 36, 8381–8390 (1997). [CrossRef]
  13. J. L. Marroquin, M. Servín, R. Rodriguez-Vera, “Adaptive quadrature filters for multiple phase-stepping images,” Opt. Lett. 23, 238–240 (1998). [CrossRef]
  14. J. L. Marroquin, M. Servín, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14, 1742–1753 (1997). [CrossRef]
  15. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–457 (1946).
  16. A. L. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), Chap. 11.
  17. J. L. Marroquin, M. Rivera, S. Botello, “Adaptive quantization and filtering using Gauss–Markov measure field models,” in Bayesian Inference for Inverse Problems, A. Mohammad-Djafari, ed., Proc. SPIE3459, 238–249 (1998). [CrossRef]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992), Chap. 13.
  19. J. H. Bruning, D. R. Herriot, J. E. Gallegher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  20. K. Freischlad, C. L. Koliopulos, “Fourier description of digital phase measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited