OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 20 — Jul. 10, 2000
  • pp: 3516–3524

Free-space parallel multichip interconnection system

Xuezhe Zheng, Philippe J. Marchand, Dawei Huang, and Sadik C. Esener  »View Author Affiliations

Applied Optics, Vol. 39, Issue 20, pp. 3516-3524 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A parallel data-communication scheme is described for interchip communication with free-space optics. We present a proof-of-concept and feasibility demonstration of a practical modular packaging approach in which free-space optical interconnect modules can be simply integrated on top of an electronic multichip module (MCM). Our packaging architecture is based on a modified folded 4-f imaging system that is implemented with off-the-shelf optics, conventional electronic packaging techniques, and passive assembly techniques to yield a potentially low-cost packaging solution. The prototype system, as built, supports 48 independent free-space channels with eight separate laser and detector chips, in which each chip consists of a one-dimensional array of 12 devices. All chips are assembled on a single ceramic carrier together with three silicon complementary metal-oxide semiconductor chips. Parallel optoelectronic (OE) free-space interconnections are demonstrated at a speed of 200 MHz. The system is compact at only 10 in.3 (∼164 cm3) and is scalable because it can easily accommodate additional chips as well as two-dimensional OE device arrays for increased interconnection density.

© 2000 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(250.0250) Optoelectronics : Optoelectronics

Original Manuscript: July 20, 1999
Revised Manuscript: March 21, 2000
Published: July 10, 2000

Xuezhe Zheng, Philippe J. Marchand, Dawei Huang, and Sadik C. Esener, "Free-space parallel multichip interconnection system," Appl. Opt. 39, 3516-3524 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Krishnamoorthy, D. A. B. Miller, “Firehose architectures for free-space optically interconnected VLSI circuits,” J. Parallel Distrib. Comput. 41, 109–114 (1997). [CrossRef]
  2. P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C. Esener, U. Efron, “Optically augmented 3-D computer: system technology and architecture.” J. Parallel Distrib. Comput., Special Issue on Optical Interconnects 41, 20–35 (1997). [CrossRef]
  3. G. A. Betzos, P. A. Mitkas, “Performance evaluation of massively parallel processing architectures with three-dimensional optical interconnections,” Appl. Opt. 37, 315–325 (1998). [CrossRef]
  4. J. W. Goodman, F. J. Leonberger, S. C. Kung, R. A. Athale, “Optical Interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  5. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, S. C. Esener, C. C. Guest, P. Yu, T. J. Drabik, M. Feldman, S. H. Lee, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
  6. W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, S. C. Esener, P. K. L. Yu, M. R. Feldman, S. H. Lee, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987). [CrossRef]
  7. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  8. D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectron. 11, 155–168 (1997).
  9. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Optoelectron. 2, 55–76 (1996). [CrossRef]
  10. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  11. F. Kiamilev, P. J. Marchand, A. V. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” IEEE J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  12. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  13. G. Yayla, P. J. Marchand, S. Esener, “Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies,” Appl. Opt. 37, 205–227 (1998). [CrossRef]
  14. R. A. Morgan, J. Bristow, M. Hibbs-Brenner, J. Nohava, S. Bounnak, T. Marta, J. Lehman, Y. Liu, “Vertical cavity surface emitting lasers for spaceborne photonic interconnects,” in Photonics for Space Environments IV, E. W. Taylor, ed., Proc SPIE2811, 232–242 (1996).
  15. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S. P. Hui, G. J. Zydzik, K. W. Goosen, J. D. Wynn, B. J. Tseng, J. A. Walker, J. E. Cunningham, L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11, 128–130 (1999). [CrossRef]
  16. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt., Special Issue on Optical Computing 33, 1601–1618 (1994).
  17. A. L. Lentine, D. J. Reiley, R. A. Novotny, R. L. Morrison, J. M. Sasian, M. G. Beckman, D. B. Buchhoz, S. J. Hinterlong, T. J. Cloonan, G. W. Richards, F. B. McCormick, “Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip,” Appl. Opt. 36, 1804–1814 (1997). [CrossRef] [PubMed]
  18. S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994). [CrossRef]
  19. D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996). [CrossRef] [PubMed]
  20. D. T. Neilson, E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2951 (1998). [CrossRef]
  21. F. Quercioli, B. Tiribilli, A. Mannoni, S. Acciai, “Optomechanics with LEGO,” Appl. Opt. 37, 3408–3416 (1998). [CrossRef]
  22. X. Zheng, P. Marchand, D. Huang, O. Kibar, N. Ozkan, S. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999). [CrossRef]
  23. Optical Research Associates, 3280 East Foothill Boulevard, Suit 300, Pasadena, Calif. 91107.
  24. ARMA Design, 7887 Dunbrook Road, Suite A, San Diego, Calif. 92126.
  25. Versatronics American, Hayward Melville, 1110 Madera Drive, Tracy, Calif. 95376–8951; http://versatronics.tstma.com/Specs.html .
  26. S. C. Esener, P. Marchand, “3D optoelectronic stacked processors: design and analysis,” in Optics in Computing ‘98, P. Chavel, D. Miller, H. Thienpont, eds., Proc SPIE3490, 541–545 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited