OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3746–3753

Consideration of Stimulated Raman Scattering in Yb:Sr5(PO4)3F Laser Amplifiers

Andy J. Bayramian, Camille Bibeau, Raymond J. Beach, Christopher D. Marshall, and Stephen A. Payne  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3746-3753 (2000)
http://dx.doi.org/10.1364/AO.39.003746


View Full Text Article

Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The stimulated Raman-scattering (SRS) gain coefficient has been measured quantitatively for the first time to our knowledge in Yb:Sr5(PO4)3F to be 1.23 ∓ 0.12 cm/GW at 1053 nm. These data, along with surface and bulk losses, feedback that is due to surface reflections, gain saturation, and bandwidth, have been applied to a quantitative model that predicts the effects of SRS within a laser amplifier system where the laser gain media show SRS gain. Limitations and impact to the laser amplifier performance are discussed, along with possible techniques to reduce SRS loss.

© 2000 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(160.3380) Materials : Laser materials
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(290.5910) Scattering : Scattering, stimulated Raman

Citation
Andy J. Bayramian, Camille Bibeau, Raymond J. Beach, Christopher D. Marshall, and Stephen A. Payne, "Consideration of Stimulated Raman Scattering in Yb:Sr5(PO4)3F Laser Amplifiers," Appl. Opt. 39, 3746-3753 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3746


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, and B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
  2. M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, and T. A. King, “Continuous-wave diode-pumped Yb3+:S-FAP laser,” Opt. Commun. 132, 275–278 (1996).
  3. C. Bibeau, I. L. Bass, R. J. Beach, L. K. Smith, C. D. Marshall, S. C. Mitchell, and S. A. Payne, “Performance of a Q-switched Yb:Sr5(PO4)3F laser,” in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 19–21.
  4. J. W. Pierce and R. D. Mead, “Yb:S-FAP laser performance,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE 2986, 19–28 (1997).
  5. L. Xiao, R. Shuangchen, and T. Yhu-Ping, “Mode-locked Yb:S-FAP laser,” Acta Photon. Sin. 26, 1007–1014 (1997).
  6. L. A. W. Gloster, P. Cormont, A. M. Cox, T. A. King, and B. H. T. Chai, “Diode-pumped Q-switched Yb:S-FAP laser,” Opt. Commun. 146, 177–180 (1998).
  7. C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, and B. H. T. Chai, “1.047-μm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 1, 67–77 (1995).
  8. C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996).
  9. C. Marshall, C. Bibeau, A. Bayramian, R. Beach, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, E. Honea, B. Krupke, J. Lawson, C. Orth, S. Payne, C. Petty, H. Powell, K. Schaffers, J. Skidmore, L. Smith, S. Sutton, and S. Telford, “Next-generation laser for inertial confinement fusion,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 318–325.
  10. L. C. Kravitz, J. D. Kingsley, and E. L. Elkin, “Raman and infrared studies of coupled PO4−3 vibrations,” J. Chem. Phys. 49, 4600–4610 (1968).
  11. M. J. Weber, ed., CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, (CRC Press, Boca Raton, Fla., 1995), pp. 334–364.
  12. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 651–660.
  13. Ref. 11, Vol. 3, Optical Materials Part 1, pp. 283–294.
  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999).
  15. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 287–298, 365–397.
  16. A. K. McQuillan, W. R. L. Clements, and B. P. Stiocheff, “Stimulated Raman emission in diamond: spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1(2), 628–635 (1970).
  17. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
  18. S. N. Karpukhin and A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1031 (1986).
  19. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402–2411 (1989).
  20. S. A. Akhmanov, Y. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39(2), 249–256 (1974).
  21. W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. 15, 648–655 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited