OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 22 — Aug. 1, 2000
  • pp: 3914–3924

Propagation Analysis of Self-Convergent Beam Width and Characterization of Hard-Edge Diffracted Beams

Stefan Amarande, Adolf Giesen, and Helmut Hügel  »View Author Affiliations


Applied Optics, Vol. 39, Issue 22, pp. 3914-3924 (2000)
http://dx.doi.org/10.1364/AO.39.003914


View Full Text Article

Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For a laser beam diffracted by a hard-edge aperture, propagation of the beam width, defined by the second-order moment of its irradiance distribution truncated according to the self-convergent-width criterion, obeys the familiar hyperbolic law. It is demonstrated numerically that, with the self-convergent-width approach, the beam-propagation parameters for three beam types (Gaussian, Hermite–Gaussian, and flattened Gaussian) diffracted by hard-edge apertures can be determined with the second-moment-based procedure that is recommended by the present draft standard only for unapertured laser beams.

© 2000 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.3430) Lasers and laser optics : Laser theory
(350.5500) Other areas of optics : Propagation

Citation
Stefan Amarande, Adolf Giesen, and Helmut Hügel, "Propagation Analysis of Self-Convergent Beam Width and Characterization of Hard-Edge Diffracted Beams," Appl. Opt. 39, 3914-3924 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-22-3914


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. W. Austin and A. Giesen, eds., Beam Control, Diagnostic, Standards and Propagation, Proc. SPIE 2375 (1995).
  2. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
  3. P.-A. Bélanger, “Beam propagation and ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
  4. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991).
  5. M. A. Porras, J. Alda, and E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  7. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Adam Hilger, New York, 1989), pp. 132–142.
  8. M. Forbes, “Laser beam spatial measurement: comparing instrument,” Lasers Optron. 9, 51–55 (1990).
  9. M. W. Sasnett and T. F. Johnston, “Beam characterization of propagation attributes,” in Laser Beam Diagnostics, R. N. Hindy and Y. Kohanzadeh, eds., Proc. SPIE 1414, 1–32 (1991).
  10. International Standards Organization, “Test methods for laser beam parameters: beam widths, divergence angle, and beam propagation factor,” standards ISO/TC 172/SC9/WG1 and ISO/DIS 11146 (Deutsches Institut für Normung, Pforzheim, Germany, 1994).
  11. M. A. Porras, “Experimental investigation on aperture-diffracted laser beam characterization,” Opt. Commun. 109, 5–9 (1994).
  12. G. Gbur and P. S. Carney, “Convergence criteria and optimization techniques for beam moments,” Pure Appl. Opt. 7, 1221–1230 (1998).
  13. G. N. Lawrence, “Proposed international standard for laser-beam quality falls short,” Laser Focus World 30(7), 109–114 (1994).
  14. D. Wright, “Can we ignore the weak spatial range of diffracted beams?” in Laser Beam Characterization, P. M. Mejías, H. Weber, R. Martínez-Herrero, and A. González-Ureña, eds. (Sociedad Espanola de Optica, Madrid, 1993), pp. 207–213.
  15. R. Martínez-Herrero and P. M. Mejías, “Parametric characterization of hard-edge diffracted beams,” in Laser Beam Characterization, P. M. Mejías, H. Weber, R. Martínez-Herrero, and A. González-Ureña, eds. (Sociedad Espanola de Optica, Madrid, 1993), pp. 197–206.
  16. P.-A. Bélanger, Y. Champagne, and C. Paré, “The beam quality factor MQ2 of diffracted beams,” in Laser Beam Characterization, P. M. Mejías, H. Weber, Martínez-Herrero, and A. González-Ureña, eds. (Sociedad Espanola de Optica, Madrid, 1993), pp. 173–183.
  17. M. A. Porras, “Entropy-based definition of laser beam spot size,” Appl. Opt. 34, 8247–8251 (1995).
  18. C. Paré and P.-A. Bélanger, “Propagation law and quasi-invariance properties of the truncated second-order moment of a diffracted beam,” Opt. Commun. 123, 679–693 (1996).
  19. C. Paré and P.-A. Bélanger, “Propagation analysis of the truncated second-order moment,” in Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds., Proc. SPIE 2870, 104–111 (1996).
  20. R. Mästle and A. Giesen, “Characterization of hard edge diffracted beams,” in Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds., Proc. SPIE 2870, 123–132 (1996).
  21. F. Varnik, R. Mästle, and A. Giesen, “Measurement of moments for diffracted beams: comparison with theory,” in Fourth International Workshop on Laser Beam and Optics Characterization, A. Giesen and M. Morin, eds. (Institut für Strahlwerkzeuge, Stuttgart, 1997), pp. 488–506.
  22. Y. Champagne and P.-A. Bélanger, “Method for measurement of realistic second-moment propagation parameters for non-ideal laser beams,” Opt. Quantum Electron. 27, 813–824 (1995).
  23. T. F. Johnston, Jr., “Beam propagation factor (M2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37, 4840–4850 (1998).
  24. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1991).
  25. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
  26. S.-A. Amarande, “Beam propagation factor and kurtosis parameter of flattened Gaussian beams,” Opt. Commun. 129, 311–317 (1996).
  27. K.-M. Du, G. Herziger, P. Loosen, and F. Rühl, “Coherence and intensity moments of laser light,” Opt. Quantum Electron. 24, 1081–1093 (1992).
  28. H. Weber, “Propagation of higher-order intensity moments in quadratic index media,” Opt. Quantum Electron. 24, 1027–1049 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited