OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 23 — Aug. 10, 2000
  • pp: 4047–4057

Temperature sensitivity of passive holographic wavelength-division multiplexers–demultiplexers

Xuegong Deng, Dechang An, Feng Zhao, Ray T. Chen, and Victor Villavicencio  »View Author Affiliations


Applied Optics, Vol. 39, Issue 23, pp. 4047-4057 (2000)
http://dx.doi.org/10.1364/AO.39.004047


View Full Text Article

Enhanced HTML    Acrobat PDF (705 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive a set of concise formulas to characterize the temperature sensitivity of holographic wavelength-division multiplexers–demultiplexers (H-MUX’s–H-DMUX’s). The normalized parameters such as dispersion abilities, central wavelength shift rate, and variations of insertion loss hold for general grating-based wavelength-division multiplexing–demultiplexing (WDM–WDDM) structures. The results are applicable to both wide-WDM–WDDM and dense ones working in 800-, 1300-, and 1550-nm optical wavelength windows, regardless of whether their input–output ports are single-mode or multimode fibers. Detailed analysis and experiments are carried out on a fully packaged four-channel H-MUX–H-DMUX. The experimental results at temperatures from 25 to 80 °C fit nicely with the theoretical prediction. We conclude that passive grating-based H-MUX’s–H-DMUX’s are promising for meeting the requirements on temperature sensitivity in optical data communications and telecommunications. Most of the analysis can be applied to other types of Bragg-grating-based WDM–WDDM.

© 2000 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.7330) Diffraction and gratings : Volume gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4230) Fiber optics and optical communications : Multiplexing

History
Original Manuscript: November 9, 1999
Revised Manuscript: May 11, 2000
Published: August 10, 2000

Citation
Xuegong Deng, Dechang An, Feng Zhao, Ray T. Chen, and Victor Villavicencio, "Temperature sensitivity of passive holographic wavelength-division multiplexers–demultiplexers," Appl. Opt. 39, 4047-4057 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-23-4047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Green, “Optical networking has arrived,” IEEE Commun. Mag. 36, 38 (1998). [CrossRef]
  2. J. P. Ryan, “WDM: North American deployment trends,” IEEE Commun. Mag. 36, 40–44 (1998). [CrossRef]
  3. C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998). [CrossRef]
  4. R. K. Butler, D. R. Polson, “Wave-division multiplexing in the Sprint long distance network,” IEEE Commun. Mag. 36, 52–55 (1998). [CrossRef]
  5. E. Pawlowski, M. Ferstl, H. Hellmich, B. Kuhlow, C. Warmuth, J. R. Salgueiro, “Fabrication of a multichannel wavelength-division multiplexing-passive optical net demultiplexer with arrayed-waveguide gratings and diffractive optical elements,” Appl. Opt. 38, 3039–3045 (1999). [CrossRef]
  6. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi-/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990). [CrossRef]
  7. D. Intani, T. Baba, K. Iga, “Simple optical wavelength-division multiplexer component that uses the lateral focusing scheme of a planar microlens,” Appl. Opt. 33, 3405–3408 (1994). [CrossRef] [PubMed]
  8. Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992). [CrossRef] [PubMed]
  9. J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994). [CrossRef] [PubMed]
  10. J. Liu, R. T. Chen, “Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,” Appl. Opt. 38, 3046–3052 (1999). [CrossRef]
  11. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  12. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  15. R. T. Chen, J. Liu, X. Deng, “Multimode-fiber-compatible WDM/WDDM with an ultra-large wavelength range,” in Wavelength Division Multiplexing, R. T. Chen, L. S. Lome, eds., Vol. CR71 of SPIE Critical Reviews of Optical Science and Technology (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash.1999), pp. 50–71.
  16. R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).
  17. X. Deng, F. Zhao, Z. Fu, J. Zou, J. Qiao, G. Kim, R. T. Chen, “Linearity of volume hologram out-coupling for wavelength-division demultiplexing,” in WDM and Photonic Switching Devices for Network Applications, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE3949, 109–119 (2000). [CrossRef]
  18. X. Deng, F. Zhao, R. T. Chen, “Optimal design of substrate-mode volume holographic wavelength divisiondemultiplexers,” in WDM and Photonic Switching Devices for Network Applications, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE3949, 120–136 (2000). [CrossRef]
  19. Optical Glass Catalog (Schott Glass Technologies, Inc., 1996), http://www.schottglasstech.com/ .
  20. For a WDM–WDDM system in the 1.55-µm-wavelength window its channel is usually located on an equal-spaced frequency grid such as the International Telecommunication Union standards in telecommunications. However, it is preferable to deal with wavelengths rather than frequencies in optics. For simplicity we ignore the slight nonlinearity of the correspondence between wavelength grid and frequency grid (especially for D-WDM–D-WDDM applications).
  21. C. C. Zhou, S. Sutton, R. T. Chen, B. V. Hunter, P. Dempewolf, “Four channel multimode wavelength division, multiplexer and demultiplexer based on photopolymer volume holographic gratings and substrate-guided waves,” in Design and Manufacturing of WDM Devices, R. T. Chen, L. S. Lome, eds., Proc. SPIE3234, 136–139 (1997). [CrossRef]
  22. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE, 73, 894–937 (1985). [CrossRef]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  24. C. B. Burckhardt, “Diffraction of plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502–1509 (1966). [CrossRef]
  25. J. E. Ludman, “Approximate bandwidth and the diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982). [CrossRef]
  26. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993). [CrossRef]
  27. W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. W. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
  28. W. J. Gambogi, K. Steijin, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1998). [CrossRef]
  29. T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981). [CrossRef]
  30. S. X. Wu, C. S. Cheng, T. Huang, S. Qin, J. Yeh, Q. Gao, A. Chen, C. P. Yeh, A. Harton, K. Wyatt, “An experimental study on mechanical, thermomechanical, and optomechanical behaviors of holographic materials,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 145–151 (1998). [CrossRef]
  31. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997). [CrossRef]
  32. R. A. Orwoll, “Densities, coefficients of thermal expansion, and compressibilities of amorphous polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (American Institute of Physics, Woodbury, N.Y., 1996).
  33. J. Yeh, A. Harton, K. Wyatt, “Realibility study of holographic optical elements made with DuPont photopolymer,” Appl. Opt. 37, 6270–6274 (1998). [CrossRef]
  34. Corning InfiniCor 50-µm-core multimode fibers.
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC, Washington, D.C., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited