OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 23 — Aug. 10, 2000
  • pp: 4070–4075

Spatial filtering for zero-order and twin-image elimination in digital off-axis holography

Etienne Cuche, Pierre Marquet, and Christian Depeursinge  »View Author Affiliations

Applied Optics, Vol. 39, Issue 23, pp. 4070-4075 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (2505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Off-axis holograms recorded with a CCD camera are numerically reconstructed with a calculation of scalar diffraction in the Fresnel approximation. We show that the zero order of diffraction and the twin image can be digitally eliminated by means of filtering their associated spatial frequencies in the computed Fourier transform of the hologram. We show that this operation enhances the contrast of the reconstructed images and reduces the noise produced by parasitic reflections reaching the hologram plane with an incidence angle other than that of the object wave.

© 2000 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing

Original Manuscript: January 18, 2000
Revised Manuscript: May 22, 2000
Published: August 10, 2000

Etienne Cuche, Pierre Marquet, and Christian Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  2. O. Coquoz, R. Conde, F. Taleblou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995). [CrossRef] [PubMed]
  3. J. Pomarico, U. Schnars, H.-J. Hartmann, W. Jüptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt. 34, 8095–8099 (1995). [CrossRef] [PubMed]
  4. K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and x-ray wavelength,” Nature Med. 2, 939–941 (1996). [CrossRef]
  5. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992). [CrossRef]
  6. E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique,” in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, H. Pobielska eds., Proc. SPIE2927, 61–66 (1996). [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  8. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999). [CrossRef]
  9. Y. Takaki, H. Ohzu, “Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999). [CrossRef]
  10. D. Beghin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacrétaz, R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999). [CrossRef]
  11. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).
  12. E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965). [CrossRef]
  13. L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987). [CrossRef]
  14. T.-C. Poon, K. B. Doh, B. W. Shilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995). [CrossRef]
  15. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  16. G. Indenbetouw, P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999). [CrossRef]
  17. T. M. Kreis, W. P. P. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  18. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  19. See, e.g., E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  20. E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through turbid media,” Opt. Lett. 21, 1691–1693 (1996). [CrossRef] [PubMed]
  21. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  22. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 8.
  24. M. Takeda, I. Hideki, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  25. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront Fitting,” in Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics, D. Malacara ed. (Wiley, New York, 1992), Chap. 13.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited