Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Static and dynamic two-wave mixing in GaAs

Not Accessible

Your library or personal account may give you access

Abstract

We studied the two-wave mixing anisotropic diffraction process in GaAs for demodulation of static and dynamic phase encoded signals. The static results quantitatively agreed with a previous theoretical model for cubic crystals. This model has been described explicitly for all beam polarizations and crystal rotation angles with respect to the plane of incidence. Dynamic phase modulation, in which the signal beam was phase modulated at frequency f s and the reference beam at f r = f s + Δf, produced a signal at Δf that was proportional to the difference between the static beam intensities with and without two-wave mixing under all conditions of polarization and crystal orientation studied. A significant dynamic output signal was produced even when only a shift in polarization but no energy transfer occurred as a result of the anisotropic two-wave mixing process. Therefore not only is the two-wave mixing gain important when the photorefractive effect is used for dynamic phase demodulation, but so are the polarization shifts occurring from the mixing process.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Real-time holographic interferometry with double two-wave mixing in photorefractive crystals

Gregor Cedilnik, Matthias Esselbach, Armin Kiessling, and Richard Kowarschik
Appl. Opt. 39(13) 2091-2100 (2000)

Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina
J. Opt. Soc. Am. B 14(7) 1741-1749 (1997)

Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology

Yi Qiao, Yi Zhou, and Sridhar Krishnaswamy
Appl. Opt. 45(21) 5132-5142 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved