OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 4879–4885

Temporal coherence of individual turbulent patterns in atmospheric seeing

Brian Kern, Ted A. Laurence, Chris Martin, and Paul E. Dimotakis  »View Author Affiliations

Applied Optics, Vol. 39, Issue 27, pp. 4879-4885 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used a variation of the generalized scidar (scintillation detection and ranging) technique to examine the temporal coherence of turbulent patterns at different altitudes in the atmosphere above Palomar Observatory. This enables us to test the validity of a frozen turbulence hypothesis in the local reference frame of the moving atmosphere. The data set analyzed here contains three turbulent patterns, each at a different altitude, which remain internally coherent over time scales of 0.28–0.41 s. This measurement is significant, because it is made on a 5-m aperture, allowing moving patterns to be tracked over time scales longer than their own lifetimes.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.7060) Remote sensing and sensors : Turbulence

Original Manuscript: September 28, 1999
Revised Manuscript: May 31, 2000
Published: September 20, 2000

Brian Kern, Ted A. Laurence, Chris Martin, and Paul E. Dimotakis, "Temporal coherence of individual turbulent patterns in atmospheric seeing," Appl. Opt. 39, 4879-4885 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  2. G. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London 164, 476–490 (1938). [CrossRef]
  3. F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).
  4. M. B. Jorgenson, G. J. M. Aitken, “Wavefront prediction for adaptive optics,” in Proceedings of the ESO Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), Vol. 48, pp. 143–148.
  5. C. Schwartz, G. Baum, E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994). [CrossRef]
  6. P. Léna, “Astrophysics with adaptive optics: results and challenges,” in Adaptive Optics for AstronomyD. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Boston, Mass., 1994), pp. 321–332. [CrossRef]
  7. J. Vernin, F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973). [CrossRef]
  8. A. Rocca, F. Roddier, J. Vernin, “Detection of atmospheric turbulent layers by spatiotemporal and spatioangular correlation measurements of stellar-light scintillation,” J. Opt. Soc. Am. 64, 1000–1004 (1974). [CrossRef]
  9. A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994). [CrossRef]
  10. V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996). [CrossRef]
  11. R. Avila, J. Vernin, E. Masciadri, “Whole atmospheric- turbulence profiling with generalized scidar,” Appl. Opt. 36, 7898–7905 (1997). [CrossRef]
  12. A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998). [CrossRef]
  13. A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 16–18 (1941).
  14. V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998). [CrossRef]
  15. J. L. Caccia, M. Azouit, J. Vernin, “Wind and CN2 profiling by single-star scintillation analysis,“ Appl. Opt. 26, 1288–1294 (1987).
  16. M. Schöck, E. J. Spillar, “Measuring wind speeds and turbulence with a wave-front sensor,” Opt. Lett. 23, 150–152 (1998). [CrossRef]
  17. P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996). [CrossRef]
  18. E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996). [CrossRef]
  19. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited