OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 5001–5005

Bandpass-resampling effects on the retrieval of radiance and surface reflectance

Rudolf Richter  »View Author Affiliations


Applied Optics, Vol. 39, Issue 27, pp. 5001-5005 (2000)
http://dx.doi.org/10.1364/AO.39.005001


View Full Text Article

Enhanced HTML    Acrobat PDF (87 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Radiative transfer models are often employed to derive the surface reflectance for Earth-looking multispectral scanners or imaging spectrometers. For this purpose the calculated radiances have to be resampled with the spectral channel response functions of the instrument. Three methods of bandpass resampling the product terms of the radiative transfer equation are compared: the exact method and two commonly used approximations. Error budgets for the two approximate methods are given for typical multispectral and hyperspectral sensors. The error depends on the wavelength, bandwidth, atmospheric parameters, and atmospheric path length.

© 2000 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: November 19, 1999
Revised Manuscript: June 27, 2000
Published: September 20, 2000

Citation
Rudolf Richter, "Bandpass-resampling effects on the retrieval of radiance and surface reflectance," Appl. Opt. 39, 5001-5005 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-27-5001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Duggin, C. J. Robinove, “Assumptions implicit in remote sensing data acquisition and analysis,” Int. J. Remote Sens. 11, 1669–1694 (1990). [CrossRef]
  2. B. M. Herman, S. R. Browning, “The effect of aerosols on the earth–atmosphere albedo,” J. Atmos. Sci. 32, 158–165 (1975). [CrossRef]
  3. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  4. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998). [CrossRef]
  5. E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997). [CrossRef]
  6. P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987). [CrossRef]
  7. R. Santer, X. F. Gu, G. Guyot, J. L. Deuze, C. Devaux, E. Vermote, M. Verbrugghe, “SPOT calibration at the La Crau test site (France),” Remote Sens. Environ. 41, 227–237 (1992). [CrossRef]
  8. R. Richter, “On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets,” Int. J. Remote Sens. 18, 2827–2833 (1997). [CrossRef]
  9. B.-C. Gao, K. B. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993). [CrossRef]
  10. Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sens. 9, 1357–1381 (1988). [CrossRef]
  11. R. Richter, “A spatially adaptive fast atmospheric correction algorithm,” Int. J. Remote Sens. 17, 1201–1214 (1996). [CrossRef]
  12. R. W. Sjoberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1701–1716 (1983). [CrossRef]
  13. S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sens. 35, 708–717 (1997). [CrossRef]
  14. R. Richter, “Correction of satellite imagery over mountainous terrain,” Appl. Opt. 37, 4004–4015 (1998). [CrossRef]
  15. C. O. Justice, E. Vermote, J. R. G. Townshend, R. Defries, D. O. Roy, D. K. Hall, V. V. Salomonson, J. L. Privette, G. Riggs, A. Strahler, W. Lucht, R. B. Myneni, K. Knyazikhin, S. W. Running, P. R. Nemani, Z. Wan, A. R. Huete, W. van Leeuwen, R. E. Wolfe, L. Giglio, J.-P. Muller, Y. Knyazikhin, M. J. Barnsley, “The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research,” IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998). [CrossRef]
  16. K. Thome, F. Palluconi, T. Tashima, K. Matsuda, “Atmospheric correction of ASTER,” IEEE Trans. Geosci. Remote Sens. 36, 1199–1211 (1998). [CrossRef]
  17. B. L. Markham, J. L. Barker, “Spectral characterization of the Landsat Thematic Mapper sensors,” Int. J. Remote Sens. 6, 697–716 (1985). [CrossRef]
  18. T. Cocks, R. Jenssen, A. Stewart, I. Wilson, T. Shields, “The HYMAP airborne hyperspectral sensor: the system, calibration, and performance,” in Proceedings of the First EARSeL Workshop on Imaging Spectroscopy (Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland, 1998), pp. 37–42.
  19. Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996). [CrossRef]
  20. A. Gillespie, S. R. Okugawa, T. Matsunaga, J. S. Cothern, S. Hook, A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited