OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 3 — Jan. 20, 2000
  • pp: 402–410

French transportable laser ranging station: scientific objectives, technical features, and performance

Joëlle Nicolas, Francis Pierron, Michel Kasser, Pierre Exertier, Pascal Bonnefond, François Barlier, and Jennifer Haase  »View Author Affiliations


Applied Optics, Vol. 39, Issue 3, pp. 402-410 (2000)
http://dx.doi.org/10.1364/AO.39.000402


View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The French Transportable Laser Ranging Station (FTLRS) is a highly mobile satellite laser ranging (SLR) system unit that weighs 300 kg and is housed in eight containers. This telemetry laser station is dedicated to the tracking of geodetic satellites equipped with retroreflectors. There are fascinating uses in the geosciences for such a system: in tectonics, oceanography, terrestrial reference frames, and precise positioning. The idea is to use a very small 13-cm-diameter telescope installed on a motorized mount and derived from a geodetic motorized theodolite of high precision. The laser is also compact, and the use of an avalanche photodiode makes detection possible at a single photoelectron level. On-site installation of this new SLR system is fast, and the system’s routine operation is quite automated. It started its operational phase in late 1996. At present, it can track satellites at altitudes of as much as 3000 km and is designed to range to the Laser Geodynamic Earth Orientation Satellite (LAGEOS) at 6000 km in a further step. The standard error of individual measurements during the first observation campaign in Corsica is estimated to be of the order of 2–3 cm. Since then, significant improvements have been implemented. A technical description of the FTLRS is given, and the main results of the Corsica campaign are summarized.

© 2000 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.0140) Lasers and laser optics : Lasers and laser optics

History
Original Manuscript: April 6, 1999
Revised Manuscript: September 10, 1999
Published: January 20, 2000

Citation
Joëlle Nicolas, Francis Pierron, Michel Kasser, Pierre Exertier, Pascal Bonnefond, François Barlier, and Jennifer Haase, "French transportable laser ranging station: scientific objectives, technical features, and performance," Appl. Opt. 39, 402-410 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-3-402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Herring, M. Pearlman, “Future developments and synergism of space geodetic measurement techniques,” in Contributions to Geodynamics: Technology, D. E. Smith, D. L. Turcotte, eds., Vol. 25 of Geodynamics Series (American Geophysical Union, Washington, D.C., 1993), pp. 21–25.
  2. F. Perosanz, J. C. Marty, G. Balmino, “Dynamic orbit determination and gravity field model improvement from GPS, DORIS and laser measurements on TOPEX/POSEIDON satellite,” J. Geod. 71, 160–170 (1997). [CrossRef]
  3. P. Fridelance, E. Samain, C. Veillet, “T2L2—Time Transfer by Laser Link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997). [CrossRef]
  4. E. Samain, P. Fridelance, “Time Transfer by Laser Link (T2L2) experiment on Mir,” Metrologia 35, 151–159 (1998). [CrossRef]
  5. J. Degnan, “Millimeter accuracy satellite laser ranging—a review,” in Contributions to Geodynamics: Technology, D. E. Smith, D. L. Turcotte, eds., Vol. 25 of Geodynamics Series (American Geophysical Union, Washington, D.C., 1993), pp. 133–162.
  6. P. Sperber, R. Motz, P. Schotz, M. Marebby, R. Zane, “Test and developments at the MTLRS-1 receiving system,” in Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, J. Luck, ed. (Australian Government Publishing Service, Canberra, 1994), pp. 400–406.
  7. M. Abele, J. Balodis, A. Kalnis, A. Rubans, J. Vjaters, O. West, A. Zarinjsh “Portable satellite laser ranging system,” in Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, J. Luck, ed. (Australian Government Publishing Service, Canberra, 1994), pp. 160–166.
  8. P. Sperber, A. Boer, R. Dassing, H. Hase, W. Schlueter, R. Kilger, “TIGO project: concept, status, plans,” in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation, Y. Fumin, C. Wanzhen, eds. (Chinese Academy of Sciences, Shanghai, 1996), pp. 135–144.
  9. J. Degnan, J. McGarry, T. Zagwodzki, P. Titterton, H. Sweeney, H. Donovan, M. Perry, B. Conklin, W. Decker, J. Cheek, A. Mallama, P. Dunn, R. Ricklefs, “SLR2000: an inexpensive, fully automated, eyesafe satellite laser ranging system,” in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation, Y. Fumin, C. Wanzhen, eds. (Chinese Academy of Sciences, Shanghai, 1996), pp. 367–377.
  10. J. Bosworth, R. Coates, T. Fischeti, “The development of NASA’s Crustal Dynamics Project,” in Contributions to Geodynamics: Technology, D. E. Smith, D. L. Turcotte, eds., Vol. 25 of Geodynamics Series (American Geophysical Union, Washington, D.C., 1993), pp. 1–20.
  11. E. Vermaat, J. Degnan, P. Dunn, R. Noomen, A. Sinclair, “Satellite laser ranging, status and impact for Wegener,” J. Geodynam. 25, 195–212 (1998). [CrossRef]
  12. D. Argus, M. Heflin, “Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System,” Geophys. Res. Lett. 22, 1973–1976 (1995). [CrossRef]
  13. A. Cazenave, P. Gegout, L. Soudarin, K. Dominh, F. Barlier, P. Exertier, Y. Boudon, “Geodetic results from LAGEOS 1 and DORIS satellite data,” in Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, D. E. Smith, D. L. Turcotte, eds., Vol. 23 of Geodynamics Series (American Geophysical Union, Washington, D.C., 1993), pp. 81–98. [CrossRef]
  14. J. F. Crétaux, L. Soudarin, A. Cazenave, F. Bouillé, “Present-day tectonic plate motions and crustal deformations from the DORIS space system,” J. Geophys. Res. 103, 30,167–30,181 (1998). [CrossRef]
  15. At the First general meeting of the International Laser Ranging Service (ILRS), Deggendorf, Germany, 22 September 1998. Proceedings available on line from http://ilrs.gsfc.nasa.gov/9809_gen_minutes.html .
  16. See CSTG SLR/LLR Subcomission 1998 Annual Report, available on line from http://ilrs.gsfc.nasa.gov/CSTG_report_1998.html .
  17. M. Kasser, B. Goupil, “The polarization behaviour of cube corner retroreflectors used in SLR satellites,” in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation, Y. Fumin, C. Wanzhen, eds., (Chinese Academy of Sciences, Shanghai, 1996), pp. 263–268.
  18. E. Samain, Observatoire de la Côte d’Azur, Avenue N. Copernic, F-06130 Grasse, France (personal communication, 1999).
  19. J. Nicolas, P. Exertier, P. Bonnefond, F. Pierron, J. Haase, “First results with the French Transportable Laser Ranging Station” in Proceedings of the 11th International Workshop on Laser Ranging Instrumentation, Bundesamt für Kartographie und Geodäsie, eds. (Universität Munchen, Deggendorf, Germany, to be published).
  20. B. Barotto, J. P. Berthias, “First results of reduced dynamics with DORIS on TOPEX/Poseidon and SPOT,” J. Guidance Control Dynam. 19, 1296–1302 (1996). [CrossRef]
  21. G. Kirchner, F. Koidl, “Automatic SPAD time walk compensation,” in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation, Y. Fumin, C. Wanzhen, eds. (Chinese Academy of Sciences, Shanghai, 1996), pp. 293–296.
  22. P. Schwintzer, Ch. Reigber, A. Bode, Z. Kang, S. Y. Zhu, F.-H. Massmann, J. C. Raimondo, R. Biancale, G. Balmino, J. M. Lemoine, B. Moynot, J. C. Marty, F. Barlier, Y. Boudon, “Long-wavelength global gravity field models: GRIM4–S4, GRIM4–C4,” J. Geod. 71, 189–208 (1997). [CrossRef]
  23. P. Bonnefond, P. Exertier, P. Schaeffer, S. Bruinsma, F. Barlier, “Satellite altimetry from a short-arc orbit technique: application to the Mediterranean,” J. Geophys. Res. 100, 25,365–25,382 (1995). [CrossRef]
  24. B. Haines, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109-8099 (personal communication, 1996).
  25. M. Le Pape, Service Général du Nivellement, Groupe de Recherches de Geodesie Spatiale, 14 Avenue Edouard Belin, F-31400 Toulouse, France (personal communication, 1993).
  26. J. F. Crétaux, Centre National d’Etudes Spatiales, Institut Geographique National of France, 2 Avenue Pasteur, B.P. 68, F-94160 Saint Mandé, France (personal communication, 1996).
  27. E. J. Christensen, B. J. Haines, R. S. Nerem, “Calibration of TOPEX/Poseidon at platform Harvest,” J. Geophys. Res. 99, 24,465–24,485 (1994). [CrossRef]
  28. P. Bonnefond, P. Exertier, F. Barlier, “Geographically correlated errors determined from a laser-based short-arc technique,” J. Geophys. Res. 104, 15,885–15,893 (1999). [CrossRef]
  29. I. Prochazka, K. Hamal, B. Greene, “SPAD detectors for ranging with submillimeter bias,” in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation, Y. Fumin, C. Wanzhen, eds., (Chinese Academy of Sciences, Shanghai, 1996), pp. 287–292.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited