OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 3 — Jan. 20, 2000
  • pp: 441–455

Nonintrusive Optical Measurements of Aircraft Engine Exhaust Emissions and Comparison with Standard Intrusive Techniques

Klaus Schäfer, Jörg Heland, Dave H. Lister, Chris W. Wilson, Roger J. Howes, Robert S. Falk, Erwin Lindermeir, Manfred Birk, Georg Wagner, Peter Haschberger, Marc Bernard, Olivier Legras, Peter Wiesen, Ralf Kurtenbach, Klaus J. Brockmann, Volker Kriesche, Moira Hilton, Gary Bishop, Roy Clarke, John Workman, Michael Caola, Rachel Geatches, Roger Burrows, John D. Black, Philippe Hervé, and Johanna Vally  »View Author Affiliations


Applied Optics, Vol. 39, Issue 3, pp. 441-455 (2000)
http://dx.doi.org/10.1364/AO.39.000441


View Full Text Article

Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO<sub><i>x</i></sub>, total unburned hydrocarbon, and smoke), together with CO<sub>2</sub> and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO<sub>2</sub>, CO, and NO data showed agreement with intrusive techniques of approximately ∓30%. A narrow-band spectroscopic device was used to measure CO<sub>2</sub> (with deviations of less than ∓10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

Citation
Klaus Schäfer, Jörg Heland, Dave H. Lister, Chris W. Wilson, Roger J. Howes, Robert S. Falk, Erwin Lindermeir, Manfred Birk, Georg Wagner, Peter Haschberger, Marc Bernard, Olivier Legras, Peter Wiesen, Ralf Kurtenbach, Klaus J. Brockmann, Volker Kriesche, Moira Hilton, Gary Bishop, Roy Clarke, John Workman, Michael Caola, Rachel Geatches, Roger Burrows, John D. Black, Philippe Hervé, and Johanna Vally, "Nonintrusive Optical Measurements of Aircraft Engine Exhaust Emissions and Comparison with Standard Intrusive Techniques," Appl. Opt. 39, 441-455 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-3-441


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
  2. G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, and P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
  3. “Environmental Protection,” in Aircraft Engine Emissions, 2nd ed. (International Civil Aviation Organization, Document Sales Unit, 1000 Sherbrooke Street West, Suite 400, Montreal, Quebec H3A 2R2, Canada, 1993), Annex 16, Vol. 2.
  4. J. D. Black (Strategic Research Centre, Rolls Royce plc, Sin A-28, P.O. Box 31, Derby DE24 8BJ, UK) is preparing a manuscript to be called “Laser-induced incandescence applied to particle measurement in aeroengine exhausts.”
  5. M. Birk and G. Wagner (Institute for Optoelectronics, German Aerospace Centre, D-82230 Wessling, Germany) are preparing a manuscript to be called “Spectroscopic database of H2O, CO, CO2, NO, and NO2 for infrared measurements of jet aircraft engine exhaust.”
  6. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
  7. E. P. Sutton, “The development of slotted working section liners for transonic operation of the RAE Bedford 3ft wind tunnel,” Aeronautical Research Council Reports and Memoranda No. 3085 (Aeronautical Research Council, Washington, DC, 1958).
  8. “Procedure for the continuous sampling and measurement of gaseous emissions from aircraft turbine engines,” ARP1256 Rev B 1/8/1990 (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096–0001, 1990).
  9. “Procedure for the calculation of basic emission parameters for aircraft turbine engines,” AIR 1533 30/4/1982 (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096–0001, 1982).
  10. “Aircraft gas turbine exhaust smoke measurement,” ARP1179 Rev B 19/4/1991 (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096–0001, 1991).
  11. S. P. Girling and C. D. Hurley, “A smoke generator for the calibration of turbine engine smoke sampling and measuring systems,” DERA Tech Memo P1044 (Defence Evaluation and Research Agency, Pyestock, UK, January 1985).
  12. T. F. Foster and C. W. Wilson, “The validity of nitrogen dioxide measurements made from gas turbine exhausts,” DERA report number DERA/AS/PTD/WP980027/1.0 (Defence Evaluation and Research Agency, Pyestock, UK, 1998).
  13. R. M. Goody and Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).
  14. E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994).
  15. M. Hilton, A. H. Lettington, and C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
  16. J. Heland and K. Schäfer, “Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy,” Appl. Opt. 36, 4922–4931 (1997).
  17. W. L. Wolfe and G. J. Zissis, eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1985).
  18. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
  19. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
  20. E. Lindermeir, P. Haschberger, V. Tank, and H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
  21. B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).
  22. P. R. Griffith and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  23. G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, and C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).
  24. S. M. Dash and H. S. A. Pergament, “A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT Code),” NASA Contract. Reps. 3075 and 159001 (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ, 1978).
  25. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Mosebach, H. Bittner, and T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
  26. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
  27. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE 2471, 105–111 (1995).
  28. J. Heland, FTIR-Emissionsspektroskopie an Flugzeugabgasen (Wissenschafts-Verlag, Dr. W. Maraun, Frankfurt am Main, Germany, 1996).
  29. C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, and M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” Rep. AFRPL-TR-81–54 (Photon Research Associates, La Jolla, Calif., 1981).
  30. E. P. Andreev, I. P. Makarov, and F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).
  31. V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral line width with the Voigt Profile),” Zh. Prikl. Spektrosk. Minsk 16, 228–233 (1972).
  32. R. R. Gamache, R. L. Hawkins, and L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
  33. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
  34. R. L. Vander Wal and T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999) and references therein.
  35. B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
  36. N. P. Tait and D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
  37. B. Mewes and J. M. Seitzmann, “Soot volume fraction and particle size measurements with laser induced incandescence,” Appl. Opt. 36, 709–730 (1997).
  38. C. R. Shaddix and K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
  39. P. E. Bengtsson and M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
  40. M. E. Case and D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
  41. J. D. Black, and S. S. Wiseall, “CARS diagnostics on model gas turbine combustor rigs,” in Conference Proceedings CP-598 AGARD, NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines, (AGARD, Neuilly-sur-Seine, France, 1998).
  42. L. A. Gross and P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited