OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 31 — Nov. 1, 2000
  • pp: 5847–5853

Enhanced Acousto-Optic Diffraction Efficiency in a Symmetric SrTiO3/BaTiO3/SrTiO3 Thin-Film Heterostructure

Ranu Nayak, Vinay Gupta, and Sreenivas Kondepudy  »View Author Affiliations


Applied Optics, Vol. 39, Issue 31, pp. 5847-5853 (2000)
http://dx.doi.org/10.1364/AO.39.005847


View Full Text Article

Acrobat PDF (112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Guided-wave acousto-optic Bragg diffraction and surface acoustic-wave propagation in epitaxially matched SrTiO<sub>3</sub>/BaTiO<sub>3</sub>(001)/SrTiO<sub>3</sub> thin-film heterostructures have been theoretically studied. The optimum electromechanical coupling and Bragg diffraction efficiency have been determined at several acoustic frequencies by means of varying the thickness of the SrTiO<sub>3</sub> overlayer and the BaTiO<sub>3</sub> waveguiding layer. A strain-controlling nonpiezoelectric SrTiO<sub>3</sub> overlayer upon the BaTiO<sub>3</sub>/SrTiO<sub>3</sub> structure is found to enhance the coupling coefficient (<i>k</i><sup>2</sup>) and the diffraction efficiency significantly. A comparison of asymmetric and symmetric structures shows an increase in the diffraction efficiency from 10.5% to 43.0% and a decrease in the untuned-transducer conversion efficiency from 36 to 23 dB at an operating frequency of 1 GHz with an interaction length of 1 mm and an acoustic power of 1 mW.

© 2000 Optical Society of America

OCIS Codes
(160.1050) Materials : Acousto-optical materials
(230.1040) Optical devices : Acousto-optical devices
(230.4170) Optical devices : Multilayers
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves
(310.2790) Thin films : Guided waves

Citation
Ranu Nayak, Vinay Gupta, and Sreenivas Kondepudy, "Enhanced Acousto-Optic Diffraction Efficiency in a Symmetric SrTiO3/BaTiO3/SrTiO3 Thin-Film Heterostructure," Appl. Opt. 39, 5847-5853 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-31-5847


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–21 (1976).
  2. C. S. Tsai, Guided Wave Acousto-Optics: Interactions, Devices and Applications (Springer-Verlag, Berlin, 1990).
  3. C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs–GaAs planar multilayer waveguide structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).
  4. J. Kushibiki, N. Chubachi, and K. Shibayama, “Improvement of diffraction efficiency in surface-acoustic-optic devices by means of multilayered structures,” Appl. Phys. Lett. 29, 333–335 (1976).
  5. A. M. Matteo, V. M. N. Passaro, and M. N. Armenise, “High performance guided wave acoustooptic bragg cells in LiNbO3 and GaAs based structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 270–279 (1996).
  6. R. Nayak, V. Gupta, and K. Sreenivas, “Studies on acousto-optical interaction in SrTiO3/BaTiO3/SrTiO3 epitaxial thin film heterostructures,” J. Phys. D 32, 380–387 (1999).
  7. S. Jain and A. Mansingh, “Thin film layered structure for acousto-optic devices,” J. Phys. D 25, 1116–1121 (1992).
  8. J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications (Macmillan, London, 1979).
  9. K. Toda, K. Takahashi, and K. Okazaki, “Effects of thermally diffused impurities on propagation of elastic waves on the ferroelectric ceramics,” Appl. Phys. Lett. 18, 396–398 (1971).
  10. Z. Surowiak, A. M. Margolin, I. N. Zakharchenko, and S. V. Biryukov, “The influence of structure on the piezoelectric properties of BaTiO3 and (BaSr)TiO3 thin films with a diffuse phase transition,” Thin Solid Films 176, 227–246 (1989).
  11. D. M. Gill, B. A. Block, C. W. Conward, B. W. Wessels, and S. T. Ho, “Thin film channel waveguides fabricated in metalorganic chemical vapor deposition grown BaTiO3 on MgO,” Appl. Phys. Lett. 69, 2968–2970 (1996).
  12. W. J. Lin, T. Y. Tseng, H. B. Lu, S. L. Tu, S. J. Yang, and I. N. Lin, “Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulse laser deposition,” J. Appl. Phys. 77, 6466–6471 (1995).
  13. J. Gong, M. Kawasaki, K. Fujito, U. Tanaka, N. Ishizawa, K. Hirai, and K. Horiguchi, “Heteroepitaxial growth of c-axis-oriented BaTiO3 thin films with an atomically smooth surface,” Jpn. J. Appl. Phys. 32, L687–L689 (1993).
  14. T. M. Shaw, A. Gupta, M. Y. Chern, P. E. Batson, R. B. Laibowitz, and B. A. Scott, “Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition,” J. Mater. Res. 9, 2566–2573 (1994).
  15. B. K. Moon and H. Ishiwara, “Roles of buffer layers in epitaxial growth of SrTiO3 films on silicon substrates,” Jpn. J. Appl. Phys. 33, 1472–1477 (1994).
  16. B. A. Auld, in Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. 2, Chap. 12, p. 298.
  17. W. Yatsuda, T. Horishima, T. Eimura, and T. Ooiwa, “Miniaturized SAW filters using a flip-chip technique,” in Proceedings of the 1994 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1994), Vol. 4, pp. 159–162.
  18. Fujitsu, Ltd., “Wireless communication products,” Rev. 1.0, data book (Fujitsu, Tokyo, 1996).
  19. H. Odagawa, T. Meguro, and K. Yamanouchi, “GHz-range low-loss wide band SAW filters using narrow-gap floating electrode type unidirectional transducers,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 50, pp. 188–193.
  20. M. Kimio, “Recent trend of surface acoustic wave (SAW) filters: high-frequency filter using zinc oxide-sapphire substrate,” Erekutoronikusu 42, 36–38 (1997) (in Japanese).
  21. S. Shinichi, “Recent trend of surface acoustic wave (SAW) filters: high-frequency filter using diamond substrate,” Erekutoronikusu 42, 33–35 (1997) (in Japanese).
  22. K. Tsubouchi and N. Mikoshiba, “Zero-temperature coefficient SAW devices on A1N epitaxial films,” IEEE Trans. Sonics Ultrason. SU-32, 634–644 (1985).
  23. A. H. Fahmy and E. L. Adler, “Multilayer acoustic surface wave program,” Proc. Inst. Electr. Eng. 122, 470–471 (1975).
  24. G. W. Farnell and E. L. Adler, “Elastic wave propagation in thin layers,” in Physical Acoustics—Principles and Methods, W. P. Mason and R. N. Thurston, eds. (Academic, New York, 1972), Vol. 9, Chap. 2, p. 35.
  25. A. Yariv, “Coupled mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
  26. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
  27. A. Ghatak and K. Thyagarajan, in Optical Electronics (Cambridge U. Press, Cambridge, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited