OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 32 — Nov. 10, 2000
  • pp: 6028–6033

Off-axis refractive mass-transported gallium-phosphide microlens array for the reduction of distortion in an optical interconnect system

Todd A. Ballen and James R. Leger  »View Author Affiliations

Applied Optics, Vol. 39, Issue 32, pp. 6028-6033 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mass-transport smoothing has been used to fabricate an array of off-axis gallium-phosphide microlenses for use in an optical interconnection system employing a single macroscopic lens to image an array of vertical-cavity surface-emitting lasers (VCSEL’s) onto a detector array. Steering the individual VCSEL beams through the center of the relay lens creates an optical system with low distortion.

© 2000 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(200.4650) Optics in computing : Optical interconnects
(220.1000) Optical design and fabrication : Aberration compensation
(220.3630) Optical design and fabrication : Lenses
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: March 20, 2000
Revised Manuscript: August 14, 2000
Published: November 10, 2000

Todd A. Ballen and James R. Leger, "Off-axis refractive mass-transported gallium-phosphide microlens array for the reduction of distortion in an optical interconnect system," Appl. Opt. 39, 6028-6033 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998). [CrossRef]
  2. S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997). [CrossRef] [PubMed]
  3. R. L. Morrison, D. B. Buchholz, “Extensible, low-chromatic-sensitivity, all-diffractive-optics relay for interconnecting optoelectronic device arrays,” Appl. Opt. 37, 2925–2934 (1998). [CrossRef]
  4. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1998). [CrossRef]
  5. Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990). [CrossRef]
  6. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989). [CrossRef]
  7. J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995). [CrossRef]
  8. F. Nikolajeff, T. A. Ballen, J. R. Leger, A. Gopinath, T.-C. Lee, R. C. Williams, “Spatial-mode control of vertical-cavity lasers with micromirrors fabricated and replicated in semiconductor materials,” Appl. Opt. 38, 3030–3038 (1999). [CrossRef]
  9. T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium phosphide optics,” Appl. Opt. 38, 2979–2985 (1999). [CrossRef]
  10. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988). [CrossRef]
  11. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994). [CrossRef]
  12. M. P. Christensen, P. Milojkovic, M. W. Haney, “Low-distortion hybrid optical shuffle concept,” Opt. Lett. 24, 169–171 (1999). [CrossRef]
  13. R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 21.
  14. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980), p. 398.
  15. C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited