OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6072–6079

Rotational vibrational–rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment

Jens Reichardt, Scott E. Bisson, Susanne Reichardt, Claus Weitkamp, and Bernd Neidhart  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6072-6079 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational–rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational–rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70–85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter–polychromator approach.

© 2000 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman

Original Manuscript: December 1, 1999
Revised Manuscript: July 3, 2000
Published: November 20, 2000

Jens Reichardt, Scott E. Bisson, Susanne Reichardt, Claus Weitkamp, and Bernd Neidhart, "Rotational vibrational–rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment," Appl. Opt. 39, 6072-6079 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993). [CrossRef]
  2. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996). [CrossRef]
  3. J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, Rep. GKSS 98/E/11 (1998) (Universität Hamburg, Hamburg, Germany, 1997).
  4. J. Reichardt, “Error analysis of Raman differential absorption lidar ozone measurements in ice clouds,” Appl. Opt. 39, 6058–6071 (2000). [CrossRef]
  5. R. R. Dickerson, G. J. Huffman, W. T. Luke, L. J. Nunnermacker, K. E. Pickering, A. C. D. Leslie, C. G. Lindsey, W. G. N. Slinn, T. J. Kelly, P. H. Daum, A. C. Delany, J. P. Greenberg, P. R. Zimmerman, J. F. Boatman, J. D. Ray, D. H. Stedman, “Thunderstorms: an important mechanism in the transport of air pollutants,” Science 235, 460–465 (1987). [CrossRef] [PubMed]
  6. J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990). [CrossRef]
  7. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  8. J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000). [CrossRef]
  9. K. E. Pickering, A. M. Thompson, J. R. Scala, W.-K. Tao, R. R. Dickerson, J. Simpson, “Free troposphere ozone production following entrainment of urban plumes into deep convection,” J. Geophys. Res. 97, 17,985–18,000 (1992). [CrossRef]
  10. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, J. T. Merrill, R. E. Newell, J. D. Bradshaw, S. T. Sandholm, B. E. Anderson, A. R. Bandy, A. S. Bachmeier, D. R. Blake, D. D. Davis, G. L. Gregory, B. G. Heikes, Y. Kondo, S. C. Liu, F. S. Rowland, G. W. Sachse, H. B. Singh, R. W. Talbot, D. C. Thornton, “Large-scale air mass characteristics observed over Western Pacific during the summertime,” J. Geophys. Res. 101, 1691–1712 (1996). [CrossRef]
  11. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996). [CrossRef]
  12. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998). [CrossRef]
  13. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  14. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998). [CrossRef]
  15. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984). [CrossRef]
  16. S. E. Bisson, J. E. M. Goldsmith, M. G. Mitchell, “Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements,” Appl. Opt. 38, 1841–1849 (1999). [CrossRef]
  17. J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited