OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6448–6452

Dual Fabry-Perot Filter for Measurement of CO Rotational Spectra: Design and Application to the CO Spectrum of Venus

E. Serabyn, D. J. Benford, S. Wu, and J. R. Pardo  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6448-6452 (2000)
http://dx.doi.org/10.1364/AO.39.006448


View Full Text Article

Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of a harmonic resonant filter that can be used with a Fourier transform spectrometer (FTS) for simultaneous measurement of a series of lines in the CO rotational ladder. To enable studies of both broad CO absorptions in Venus and modestly red-shifted CO emission from external galaxies, relatively broad (approximately 10–30-GHz FWHM) transmission passbands are desirable. Because a single low-finesse Fabry–Perot (FP) etalon has insufficient interline rejection, a dual-FP etalon was considered. Such a design provides significantly better interband rejection and somewhat more flattopped transmission spikes. A prototype filter of this type, made of two thin silicon disks spaced by an air gap, has been constructed and used with our FTS at the Caltech Submillimeter Observatory for simultaneous measurement of the four submillimeter CO transitions in the atmosphere of Venus that are accessible from the ground.

© 2000 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(350.1270) Other areas of optics : Astronomy and astrophysics

Citation
E. Serabyn, D. J. Benford, S. Wu, and J. R. Pardo, "Dual Fabry-Perot Filter for Measurement of CO Rotational Spectra: Design and Application to the CO Spectrum of Venus," Appl. Opt. 39, 6448-6452 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6448


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. L. Wright, J. C. Mather, C. L. Bennett, E. S. Cheng, R. A. Shafer, D. J. Fixsen, R. E. Eplee, R. B. Isaacman, S. M. Read, N. W. Boggess, S. Gulkis, M. G. Hauser, M. Janssen, T. Kelsall, P. M. Lubin, S. S. Meyer, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, R. Weiss, and D. T. Wilkinson, “Preliminary spectral observations of the galaxy with a 7° beam by the Cosmic Background Explorer (COBE),” Astrophys. J. 381, 200–209 (1991).
  2. E. Serabyn and E. W. Weisstein, “Fourier-transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
  3. D. E. Jennings, D. Deming, G. R. Wiedemann, and J. J. Keady, “Detection of 12 micron Mg I and OH lines in stellar spectra,” Astrophys. J. 310, L39–L43 (1986).
  4. M. F. Campbell, L. Haser, and S. Drapatz, “Fabry–Perot etalons as prefilters for astronomical far-infrared Fourier transform spectroscopy,” Infrared Phys. 29, 947–959 (1989).
  5. R. T. Clancy and D. O. Muhleman, “Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of C-12O, C-13O, and CO-18,” Icarus 89, 129–146 (1991).
  6. M. A. Gurwell, D. O. Muhleman, K. P. Shah, G. L. Berge, and D. J. Rudy, “Observations of the CO bulge on Venus and implications for mesospheric winds,” Icarus 115, 141–158 (1995).
  7. E. Serabyn, E. W. Weisstein, D. C. Lis, and J. R. Pardo, “Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea,” Appl. Opt. 37, 2185–2198 (1998).
  8. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
  9. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1997), Chap. 9.
  10. J. J. Bock, M. Kawada, H. Matsuhara, P. L. Richards, and A. E. Lange, “Silicon-gap Fabry–Perot filter for far-infrared wavelengths,” Appl. Opt. 34, 3651–3657 (1995).
  11. G. Hernandez, Fabry–Perot Interferometers (Cambridge University Press, Cambridge, 1986).
  12. M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. 1.
  13. Virginia Semiconductor, 1501 Powhatan Street, Fredericksburg, Va. 22401; telephone 540–373–2900.
  14. Nicolet 60SX spectrometer, Nicolet Instruments, 5225 Verona Rd., Madison, Wis. 53711; telephone 800–232–1472.
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1983).
  16. Accurate Instrument Repair, 1650-A N. Glassell St., Orange, Calif. 92667; telephone 714–637–5030.
  17. Infrared Labs, 1808 East 17th St., Tucson, Ariz. 85719–6505; telephone 520–622–7074.
  18. M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, E. Serabyn, and T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves 20, 383–400 (1999).
  19. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical constants of far infrared materials. 2. Crystalline solids,” Appl. Opt. 12, 398–406 (1973).
  20. E. Serabyn and E. W. Weisstein, “Calibration of planetary brightness temperature Spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt. 35, 2752–2763 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited