OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6746–6753

Single-Photon Counting for the 1300–1600-nm Range by Use of Peltier-Cooled and Passively Quenched InGaAs Avalanche Photodiodes

John G. Rarity, Thomas E. Wall, Kevin D. Ridley, Philippa C. M. Owens, and Paul R. Tapster  »View Author Affiliations

Applied Optics, Vol. 39, Issue 36, pp. 6746-6753 (2000)

View Full Text Article

Acrobat PDF (139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate the performance of various commercially available InGaAs/InP avalanche photodiodes for photon counting in the infrared at temperatures that can be reached by Peltier cooling. We find that dark count rates are high, and this can partially saturate devices before optimum performance is achieved. At low temperatures the dark count rate rises because of a strong contribution from correlated afterpulses. We discuss ways of suppressing these afterpulses for different photon-counting applications.

© 2000 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(270.5290) Quantum optics : Photon statistics

John G. Rarity, Thomas E. Wall, Kevin D. Ridley, Philippa C. M. Owens, and Paul R. Tapster, "Single-Photon Counting for the 1300–1600-nm Range by Use of Peltier-Cooled and Passively Quenched InGaAs Avalanche Photodiodes," Appl. Opt. 39, 6746-6753 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. G. W. Brown, K. D. Ridley, and J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. I. Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
  2. R. G. W. Brown, R. Jones, J. G. Rarity, and K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. II. Active quenching,” Appl. Opt. 26, 2383–2388 (1987).
  3. Data sheet on SPCM-AQ photon counting module, EG&G, Optoelectronics Division, Vaudreuil, Canada.
  4. P. C. M. Owens, J. G. Rarity, P. R. Tapster, and P. D. Townsend, “Photon counting with passively quenched germanium avalanche diodes,” Appl. Opt. 33, 6895–6901 (1994).
  5. B. T. Levine, C. G. Bethea, and J. C. Campbell, “Room temperature 1.3 μm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
  6. J. G. Rarity and P. R. Tapster, “Technology for quantum cryptography—secure communication with light,” Def. Sci. J. 1, 388–395 (1996).
  7. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
  8. G. Ribordy, J.-D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
  9. A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, and P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).
  10. P. A. Hiskett, G. S. Buller, J. M. Smith, A. Y. Loudon, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm,” Appl. Opt. 39, 6818–6829 (2000).
  11. A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
  12. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
  13. M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited