OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6787–6798

Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis

Geneviève Anctil, Nathalie McCarthy, and Michel Piché  »View Author Affiliations

Applied Optics, Vol. 39, Issue 36, pp. 6787-6798 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

© 2000 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.6810) Lasers and laser optics : Thermal effects

Original Manuscript: March 6, 2000
Revised Manuscript: September 1, 2000
Published: December 20, 2000

Geneviève Anctil, Nathalie McCarthy, and Michel Piché, "Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis," Appl. Opt. 39, 6787-6798 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef] [PubMed]
  2. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. P. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994). [CrossRef] [PubMed]
  3. L. Xu, Ch. Spielmann, F. Krausz, R. Szipöcs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996). [CrossRef] [PubMed]
  4. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009–1011 (1997). [CrossRef] [PubMed]
  5. G. P. A. Malcolm, A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16, 1967–1969 (1991). [CrossRef] [PubMed]
  6. A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992). [CrossRef] [PubMed]
  7. A. Miller, P. LiKamWa, B. H. T. Chai, E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSrAlF6,” Opt. Lett. 17, 195–197 (1992). [CrossRef] [PubMed]
  8. P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994). [CrossRef] [PubMed]
  9. M. J. P. Dymott, A. I. Ferguson, “Self-mode-locked diode-pumped Cr:LiSAF laser,” Opt. Lett. 19, 1988–1990 (1994). [CrossRef] [PubMed]
  10. V. P. Yanovsky, F. W. Wise, A. Cassanho, H. P. Jenssen, “Kerr-lens mode-locked diode-pumped Cr:LiSGAF laser,” Opt. Lett. 20, 1304–1306 (1995). [CrossRef] [PubMed]
  11. M. Ramaswamy-Paye, J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994). [CrossRef] [PubMed]
  12. B. E. Bouma, J. G. Fujimoto, “Compact Kerr-lens mode-locked resonators,” Opt. Lett. 21, 134–136 (1996). [CrossRef] [PubMed]
  13. M. Piché, “Beam reshaping and self-mode-locking in nonlinear laser resonators,” Opt. Commun. 86, 156–160 (1991). [CrossRef]
  14. F. Salin, J. A. Squier, M. Piché, “Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991). [CrossRef] [PubMed]
  15. H. A. Haus, J. G. Fujimoto, E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  16. M. Piché, F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18, 1041–1043 (1993). [CrossRef] [PubMed]
  17. J.-F. Cormier, M. Piché, F. Salin, “Suppression of beam breakup in self-mode-locked Ti:sapphire lasers,” Opt. Lett. 19, 1225–1227 (1994). [CrossRef] [PubMed]
  18. O. E. Martinez, J. L. A. Chilla, “Self-mode-locking of Ti:sapphire lasers: a matrix formalism,” Opt. Lett. 17, 1210–1212 (1992). [CrossRef] [PubMed]
  19. T. Brabec, Ch. Spielman, P. F. Curley, F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992). [CrossRef] [PubMed]
  20. J. Hermann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11, 498–512 (1994). [CrossRef]
  21. G. Cerullo, S. De Silvestri, V. Magni, L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807–809 (1994). [CrossRef] [PubMed]
  22. V. Magni, G. Cerullo, S. De Silvestri, A. Monguzzi, “Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking,” J. Opt. Soc. Am. B 12, 476–485 (1995). [CrossRef]
  23. X. G. Huang, F. Huang, W.-K. Lee, M. R. Wang, “Cavity design of a compact Kerr-lens mode-locking laser,” Opt. Commun. 142, 249–252 (1997). [CrossRef]
  24. V. L. Kalashnikov, V. P. Kalosha, I. G. Poloyko, V. P. Mikhailov, “Optimal resonators for self-mode locking of continuous-wave solid-state lasers,” J. Opt. Soc. Am. B 14, 964–969 (1997). [CrossRef]
  25. G. J. Valentine, J.-M. Hopkins, D. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997). [CrossRef]
  26. A. Ritsataki, G. H. C. New, R. Mellish, S. C. W. New, P. M. W. French, J. R. Taylor, “Theoretical modeling of gain-guiding effects in experimental all-solid-state KLM lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 185–192 (1998). [CrossRef]
  27. X. G. Huang, M. R. Wang, “Analytical design for Kerr-lens mode locking of compact solid-state lasers,” Opt. Commun. 158, 322–330 (1998). [CrossRef]
  28. R. E. Bridges, R. W. Boyd, G. P. Agrawal, “Effect of beam ellipticity on self-mode locking in lasers,” Opt. Lett. 18, 2026–2028 (1993). [CrossRef] [PubMed]
  29. M. Sheik-Bahae, P. Li-Kam-Wa, P. Buck, “Optimization of Kerr-lens resonators,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 179.
  30. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  31. V. Couderc, O. Guy, A. Barthelemy, C. Froehly, F. Louradour, “Self-optimized resonator for optical pumping of solid-state lasers,” Opt. Lett. 19, 1134–1136 (1994). [CrossRef] [PubMed]
  32. M. E. Innoncenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]
  33. J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28, 1046–1055 (1992). [CrossRef]
  34. J.-F. Cormier, “Étude de la génération d’impulsions brèves dans les lasers à autosynchronisation modale,” doctoral dissertation (Université Laval, Cité Universitaire, Québec, Canada, 1996).
  35. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 7. [CrossRef]
  36. G. Anctil, “Régimes d’émission d’un laser à l’état solide muni d’une cavité en V,” master’s degree thesis (Université Laval, Cité Universitaire, Québec, (Canada, 1998).
  37. A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997). [CrossRef]
  38. M. Mehendale, T. R. Nelson, F. G. Omenetto, W. A. Andreas, “Thermal effects in laser pumped Kerr-lens modelocked Ti:sapphire lasers,” Opt. Commun. 136, 150–159 (1997). [CrossRef]
  39. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited