OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6799–6805

Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser

Ikuko Nitta, J. Abeles, and Peter J. Delfyett  »View Author Affiliations


Applied Optics, Vol. 39, Issue 36, pp. 6799-6805 (2000)
http://dx.doi.org/10.1364/AO.39.006799


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiwavelength laser source composed of a single semiconductor optical amplifier and a commercially available off-the-shelf wavelength-division multiplexed (WDM) filter is constructed and tested under actively mode-locking operation. Five independent mode-locked wavelength channels are generated simultaneously, with a wavelength spacing of 1.6 nm established by the WDM filter. In addition, to demonstrate the potential of this mixed time–frequency, or hybrid WDM–optical time-division multiplexed, signal, we demonstrate a simple parallel-to-serial wavelength conversion to increase the pulse repetition rate of the mode-locked laser by a number of output wavelengths for applications in high-performance optical sampling applications.

© 2000 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

History
Original Manuscript: June 20, 2000
Revised Manuscript: September 25, 2000
Published: December 20, 2000

Citation
Ikuko Nitta, J. Abeles, and Peter J. Delfyett, "Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser," Appl. Opt. 39, 6799-6805 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-36-6799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Scheerer, C. Glingener, A. Farbert, J. P. Elbers, A. Schopflin, E. Gottwald, G. Fisher, “3.2 Tbit/s (80 × 40 Gbit/s) bidirectional WDM/ETDM transmission over 40km standard singlemode fiber,” Electron. Lett. 35, 1752–1753 (1999). [CrossRef]
  2. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinnoshita, M. Seino, H. Nishimoto, T. Chikama, “1.1 Tb/s WDM transmission over a 150 km 1.3 µm zero-dispersion single-mode fiber,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper PD19–1.
  3. L. Boivin, M. Wegmueller, M. C. Nuss, W. H. Knox, “110 Channels × 2.35 Gb/s from a single femtosecond laser,” IEEE Photon. Technol. Lett. 11, 466–468 (1999). [CrossRef]
  4. Y. Takushima, K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fibers,” IEEE Photon. Technol. Lett. 11, 322–324 (1999). [CrossRef]
  5. N. Park, P. F. Wysocki, “24-Line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996). [CrossRef]
  6. H. F. Taylor, “An optical analog-to-digital converter—design and analysis,” IEEE J. Quantum Electron. QE-15, 210–216 (1979). [CrossRef]
  7. A. D. McAulay, “Optical analog to digital converter using optical logic and table look-up,” Opt. Eng. 29, 114–120 (1990). [CrossRef]
  8. R. Helkey, “Narrow-band optical A/D converter with suppressed second-order distortion,” IEEE Photon. Technol. Lett. 11, 599–601 (1999). [CrossRef]
  9. A. Yariv, R. G. M. P. Koumans, “Time interleaved optical sampling for ultra high speed A/D conversion,” Electron. Lett. 34, 2012–2013 (1998). [CrossRef]
  10. B. Jalali, F. Coppinger, A. S. Bhushan, “Time-stretch processing oversomes ADC limitations,” Microwaves RF 38(3), 57–66 (1999); “Time-stretch methods capture fast waveforms,” Microwaves RF 38(4), 63–69 (1999).
  11. P. J. Delfyett, L. Thirion Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, “High-power ultrafast laser diodes,” IEEE J. Quantum Electron. 28, 2203–2219 (1992). [CrossRef]
  12. J. P. Laude, J. M. Lermer, “Wavelength division multiplexing/demultiplexing (WDM) using diffraction gratings,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings and Moire Phenomena II, J. M. Lerner, ed., Proc. SPIE503, 22–28 (1984). [CrossRef]
  13. S. Gee, R. Coffie, G. Alphonse, J. Connolly, P. J. Delfyett, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple-quantum-well saturable absorbers,” Appl. Phys. Lett. 71, 2569–2571 (1997). [CrossRef]
  14. M. K. Smit, C. van Dan, “PHASER-based WDM-devices: principle, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996). [CrossRef]
  15. G. Lenz, B. J. Eggelton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998). [CrossRef]
  16. G. F. Boudreaux-Bartels, “Mixed time frequency signal transformations,” in Transforms and Applications Handbook, A. D. Poularikas, ed. (CRC Press, Boca Raton, Fla., 1996), Chap. 12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited