OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6918–6925

Simultaneous Temperature and Relative O2-N2 Concentration Measurements by Single-Shot Pure Rotational Coherent Anti-Stokes Raman Scattering for Pressures as Great as 5 MPa

Martin Schenk, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 39, Issue 36, pp. 6918-6925 (2000)

View Full Text Article

Acrobat PDF (134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-broadband pure rotational coherent anti-Stokes Raman scattering is a valuable nonintrusive tool for gas diagnosis that provides simultaneous and time-resolved information about temperature and relative species concentration. A systematic investigation of single-shot precision and accuracy of simultaneous measurement of temperature and O<sub>2</sub>/N<sub>2</sub> concentration is presented. Various O<sub>2</sub> concentrations (1.0–15.6%) in binary mixtures with N<sub>2</sub> have been investigated in a temperature range from 300 to 773 K and for pressures of 1–50 bars (0.1–5 MPa). A comparison of two least-sum-squared differences fit evaluation procedures for the spectral shape, weighted constantly or inversely with respect to the relative signal intensity, is given. The results yielded good accuracy and precision for measuring temperature as well as concentration. The influence of temperature, O<sub>2</sub> concentration, pressure, and evaluation techniques on both accuracy and precision is discussed.

© 2000 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5860) Scattering : Scattering, Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Martin Schenk, Thomas Seeger, and Alfred Leipertz, "Simultaneous Temperature and Relative O2-N2 Concentration Measurements by Single-Shot Pure Rotational Coherent Anti-Stokes Raman Scattering for Pressures as Great as 5 MPa," Appl. Opt. 39, 6918-6925 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. R. Regnier and J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
  2. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump–Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
  3. M. Alden, P.-E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2 ed. (Gordon & Breach, Amsterdam, 1996), Vol. 3.
  5. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987).
  6. R. D. Hancock, F. R. Schauer, R. P. Lucht, and R. L. Farrow, “Dual-pump coherent anti-Stokes–Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
  7. M. Pealat, P. Magre, P. Bouchardy, and G. Collin, “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS,” Appl. Opt. 30, 1263–1273 (1991).
  8. A. C. Eckbreth and T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
  9. J. B. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, and R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
  10. T. Lasser, E. Magens, and A. Leipertz, “Gas thermometry by Fourier analysis of rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 10, 535–537 (1985).
  11. E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” in Berichte zur Energie- und Verfahrenstechnik-BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2, pp. 129–150.
  12. L. Martinsson, P.-E. Bengtsson, and M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
  13. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes–Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
  14. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes–Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
  15. M. Schenk, T. Seeger, and A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heyns, ed. (Wiley, Chichester, England, 1998), pp. 160–161.
  16. L. Martinsson, P.-E. Bengtsson, M. Alden, and S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.
  17. A. Thumann, “Temperaturbestimmung mittels der Kohärenten-Anti-Stokes-Raman-Streuung (CARS) unter Berücksichtigung des Druckeinflusses und nichteinheitlicher Temperaturverhältnisse im Messvolumen,” in Berichte zur Energie- und Verfahrenstechnik-BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1997), Vol. 97.4, pp. 100–103.
  18. J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, and T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.
  19. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, and G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.
  20. M. Schenk, A. Thumann, T. Seeger, and A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for single-shot simultaneous temperature and relative N2–O2 concentration determination,” Appl. Opt. 37, 5659–5671 (1998).
  21. M. Schenk, “Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie,” in Berichte zur Energie- und Verfahrenstechnik-BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2, pp. 98–118.
  22. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.
  23. J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, and H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
  24. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
  25. M. Woyde, “Temperaturbestimmung hoher Genauigkeit mit CARS in Hochdruckverbrennungssystemen,” Ph.D. dissertation (Universität Stuttgart, Stuttgart, Germany, 1992).
  26. L. Martinsson, “Theoretical development of rotational CARS for combustion diagnostics,” Ph.D. dissertation, (Lund Institute of Technology, Lund, Sweden, 1994).
  27. V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, and F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
  28. V. Alekseyev and I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).
  29. R. C. H. Tam and A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
  30. M. C. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982).
  31. T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980).
  32. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, and D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited