OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 4 — Feb. 1, 2000
  • pp: 515–525

Liquid-crystal-display projector-based modulation transfer function measurements of charge-coupled-device video camera systems

Brian T. Teipen and Duncan L. MacFarlane  »View Author Affiliations


Applied Optics, Vol. 39, Issue 4, pp. 515-525 (2000)
http://dx.doi.org/10.1364/AO.39.000515


View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the ability to measure the system modulation transfer function (MTF) of both color and monochrome charge-coupled-device (CCD) video camera systems with a liquid-crystal-display (LCD) projector. Test matrices programmed to the LCD projector were chosen primarily to have a flat power spectral density (PSD) when averaged along one dimension. We explored several matrices and present results for a matrix produced with a random-number generator, a matrix of sequency-ordered Walsh functions, a pseudorandom Hadamard matrix, and a pseudorandom uniformly redundant array. All results are in agreement with expected filtering. The Walsh matrix and the Hadamard matrix show excellent agreement with the matrix from the random-number generator. We show that shift-variant effects between the LCD array and the CCD array can be kept small. This projector test method offers convenient measurement of the MTF of a low-cost video system. Such characterization is useful for an increasing number of machine vision applications and metrology applications.

© 2000 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(110.4100) Imaging systems : Modulation transfer function
(120.2040) Instrumentation, measurement, and metrology : Displays
(150.0150) Machine vision : Machine vision

History
Original Manuscript: July 20, 1999
Revised Manuscript: October 18, 1999
Published: February 1, 2000

Citation
Brian T. Teipen and Duncan L. MacFarlane, "Liquid-crystal-display projector-based modulation transfer function measurements of charge-coupled-device video camera systems," Appl. Opt. 39, 515-525 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-4-515


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), pp. 484–490.
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 137–154.
  3. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, UK, 1997), pp. 265–333. [CrossRef]
  4. C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989), pp. 149–158.
  5. D. N. Sitter, J. S. Goddard, R. K. Ferrell, “Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns,” Appl. Opt. 34, 746–751 (1995). [CrossRef] [PubMed]
  6. S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991). [CrossRef]
  7. W. Hon-Sum, “Effect of knife-edge skew on MTF measurements of CCD imagers employing a knife-edge,” Opt. Eng. 30, 1394–1398 (1991). [CrossRef]
  8. M. Marchywka, D. G. Socker, “Modulation transfer function measurement techniques for small-pixel detectors,” Appl. Opt. 31, 7198–7213 (1992). [CrossRef] [PubMed]
  9. J. E. Greivenkamp, A. E. Lowman, “Modulation transfer function measurements of sparse-array sensors using a self-calibrating fringe pattern,” Appl. Opt. 33, 5029–5036 (1994). [CrossRef] [PubMed]
  10. N. Guérineau, J. Primot, M. Tauvy, M. Caes, “Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target,” Appl. Opt. 38, 631–637 (1999). [CrossRef]
  11. G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986). [CrossRef]
  12. W. Astar, “New power-efficient optical filter for detector array modulation transfer function measurement by laser speckle,” Opt. Eng. 35, 2761–2764 (1996). [CrossRef]
  13. A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995). [CrossRef]
  14. E. J. van Zwet, H. W. Zandbergen, “Measurement of the modulation transfer function of a slow-scan CCD camera on a TEM using a thin amorphous film as a test signal,” Ultramicroscopy 64, 49–55 (1996). [CrossRef]
  15. S. K. Park, R. Schowengerdt, M. Kaczynski, “Modulation transfer function analysis for sampled image systems,” Appl. Opt. 23, 2572–2582 (1984). [CrossRef]
  16. W. Wittenstein, J. C. Fontanella, A. R. Newberry, J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982). [CrossRef]
  17. Z. Chen, M. A. Karim, “Effects of indented interframe cross talk in charge-coupled device detection of discrete displays,” Appl. Opt. 38, 314–324 (1999). [CrossRef]
  18. M. Sjödahl, P. Synnergren, “Measurement of shape by using projected random patterns and temporal digital speckle photography,” Appl. Opt. 38, 1990–1997 (1999). [CrossRef]
  19. G. Marsaglia, “A current view of random number generators,” Keynote Address, in Computer Science and Statistics: 16th Symposium on the Interface, L. Billard, ed. (North-Holland, Elsevier, Amsterdam, 1985), pp. 3–10.
  20. S. Park, K. Miller, “Random number generators: good ones are hard to find,” Commun. ACM 31, 1192–1201 (1988). [CrossRef]
  21. G. Marsaglia, “Random number generation,” in Encyclopedia of Computer Science and Engineering, A. Ralston, ed. (Van Nostrand Reinhold, New York, 1983), pp. 1260–1264.
  22. G. Marsaglia, “Matrices and the structure of random number sequences,” Linear Algebr. Appl. 67, 147–157 (1985). [CrossRef]
  23. The MathWorks, Inc, http://www.mathworks.com/support/solutions/v5/8542.shtml .
  24. G. Marsaglia, A. Zaman, “A new class of random number generators,” Ann. Appl. Probability 1, 462–480 (1991). [CrossRef]
  25. J. L. Walsh, “A closed set of orthogonal functions,” Ann. J. Math. 55, 5–24 (1923).
  26. K. G. Beauchamp, Applications of Walsh and Related Functions (Academic, San Diego, Calif., 1977).
  27. H. F. Harmuth, Sequency Theory: Foundations and Applications (Academic, San Diego, Calif., 1984).
  28. M. J. Hadamard, “Résolution d’une question relative aux déterminants,” Bull. Sci. Math. A 17, 240–246 (1893).
  29. M. Harwit, N. J. A. Sloane, Hadamard Transform Optics (Academic, San Diego, Calif., 1979), pp. 212–214.
  30. J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1995), pp. 422–423.
  31. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton’s Rule, ornamental tile work, and the theory of numbers,” Philos. Mag. Ser. 4 34, 461–475 (1867).
  32. E. E. Fenimore, T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978). [CrossRef] [PubMed]
  33. S. R. Gottesman, E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989). [CrossRef] [PubMed]
  34. E. E. Fenimore, “Coded aperture imaging: the modulation transfer function for uniformly redundant arrays,” Appl. Opt. 19, 2465–2471 (1980). [CrossRef] [PubMed]
  35. Panasonic GP-KR222 Industrial Color CCD Data Sheet, Industrial Camera Division, One Panasonic Way, Secaucus, N.J. 07094; see also, Sony Semiconductor document files ICX038DNA.pdf (color CCD sensor) and CXA1391R.pdf (primary color separation), available at http://www.sel.sony.com/semi/ccdarea.html .
  36. G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., Vol PM57 of SPIE Monographs and Handbooks Series (JCD Publishing, Winter Park, Fla. and SPIE Optical Engineering Press, Bellingham, Wash., 1998).
  37. W. Na, J. K. Paik, C. H. Lee, “An image restoration system for a single-CCD color camcorder,” IEEE Trans. Consumer Electron. 41, 563–571 (1995). [CrossRef]
  38. J. E. Greivenkamp, “Color dependent optical prefilter for the suppression of aliasing artifacts,” Appl. Opt. 29, 676–684 (1990). [CrossRef] [PubMed]
  39. Panasonic GP-KR222 Industrial Color CCD Camera Operating Instructions (Panasonic, Secaucus, N.J. 07094).
  40. Philips SAA7110 One Chip Front-end 1 (OCF1), Product Specification IC22, document file SAA7110 A 1.pdf, http://www-us2.semiconductors.philips.com/pip/SAA7110AWP , 1995, pp. 10–11. 59, 62–63.
  41. K. Jack, Video Demystified, 2nd ed. (Hightext Publications, San Diego, Calif., 1996).
  42. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 68–73.
  43. E. Levy, D. Peles, M. Opher-Lipson, S. G. Lipson, “Modulation transfer function of a lens measured with a random target method,” Appl. Opt. 38, 679–683 (1999). [CrossRef]
  44. T. Lomheim, L. Schumann, R. Shima, J. Thompson, W. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned TDI charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited