OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 4 — Feb. 1, 2000
  • pp: 642–649

Vacuum deposition of chiral sculptured thin films with high optical activity

Ian Hodgkinson, Qi hong Wu, Ben Knight, Akhlesh Lakhtakia, and Kevin Robbie  »View Author Affiliations


Applied Optics, Vol. 39, Issue 4, pp. 642-649 (2000)
http://dx.doi.org/10.1364/AO.39.000642


View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the technique of bideposition to realize thin-film helicoidal bianisotropic mediums (TFHBM’s) that exhibit high optical activity. We show, by experiment as well as by simulation, that the optical rotation produced by these chiral sculptured thin films is roughly proportional to the square of the local linear birefringence. Experimental measurements on bideposited TFHBM’s of titanium oxide yield a typical value of 5°/µm for the effective specific rotation in the short-wavelength regime; the corresponding value determined for the standard unideposited TFHBM’s is 1°/µm. Both types of TFHBM’s are highly optically active in comparison with quartz, fluorite films, and cholesteric liquid crystals. Bideposited TFHBM’s will lend themselves to many different types of optical devices.

© 2000 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.0310) Optics at surfaces : Thin films
(260.1440) Physical optics : Birefringence
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: May 25, 1999
Revised Manuscript: October 19, 1999
Published: February 1, 2000

Citation
Ian Hodgkinson, Qi hong Wu, Ben Knight, Akhlesh Lakhtakia, and Kevin Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-4-642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985).
  2. H. C. Chen, Theory of Electromagnetic Waves (TechBooks, Fairfax, Va., 1993).
  3. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).
  4. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, UK, 1992).
  5. A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998). [CrossRef]
  6. E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. (Leipzig) 138, 628–638 (1869). [CrossRef]
  7. N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959). [CrossRef]
  8. A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997). [CrossRef]
  9. K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995). [CrossRef]
  10. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996). [CrossRef]
  11. P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997). [CrossRef]
  12. V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998). [CrossRef]
  13. V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).
  14. P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998). [CrossRef]
  15. A. Lakhtakia, “Energy flows in axially excited, locally biaxial, dielectric, helicoidal bianisotropic media (HBMs),” Opt. Commun. 161, 275–286 (1999). [CrossRef]
  16. A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999). [CrossRef]
  17. I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998). [CrossRef]
  18. I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  19. In this paper, the term wavelength refers to wavelength in vacuum.
  20. V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).
  21. A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998). [CrossRef]
  22. R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999). [CrossRef]
  23. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998). [CrossRef]
  24. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998). [CrossRef]
  25. I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.
  26. I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999). [CrossRef]
  27. I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999). [CrossRef]
  28. I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999). [CrossRef]
  29. I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, eds., Proc. SPIE3790, 119–139 (1999). [CrossRef]
  30. I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998). [CrossRef]
  31. I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999). [CrossRef]
  32. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989). [CrossRef] [PubMed]
  33. A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994). [CrossRef]
  34. I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998). [CrossRef]
  35. O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998). [CrossRef]
  36. A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998). [CrossRef]
  37. I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998). [CrossRef]
  38. E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998). [CrossRef]
  39. D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970). [CrossRef]
  40. A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998). [CrossRef]
  41. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  42. P. G. deGennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, UK, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited