OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 796–802

Image distance transforms that use optical correlation

Shuqun Zhang and Mohammad A. Karim  »View Author Affiliations


Applied Optics, Vol. 39, Issue 5, pp. 796-802 (2000)
http://dx.doi.org/10.1364/AO.39.000796


View Full Text Article

Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The image distance transform is a time-consuming global operation. We use optical correlation for the fast computation of binary image distance transforms. A joint transform correlator is proposed to implement the algorithm that accommodates the morphological threshold-decomposition concept. The proposed optical processor is programmable for computing Euclidean, city-block, and chessboard distance transforms in real time. Skeletonization by use of the distance transform and the rotation invariance of the Euclidean distance transform are demonstrated.

© 2000 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.4550) Fourier optics and signal processing : Correlators
(200.4560) Optics in computing : Optical data processing
(200.4690) Optics in computing : Morphological transformations

History
Original Manuscript: May 6, 1999
Revised Manuscript: August 17, 1999
Published: February 10, 2000

Citation
Shuqun Zhang and Mohammad A. Karim, "Image distance transforms that use optical correlation," Appl. Opt. 39, 796-802 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-5-796


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Borgefors, “Distance transformations in digital images,” Comput. Vision Graph. Image Proc. 34, 344–371 (1986). [CrossRef]
  2. N. H. Farhat, D. Psaltis, A. Prata, E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985). [CrossRef] [PubMed]
  3. A. P. Ittycheriah, J. F. Walkup, T. F. Krile, S. L. Lim, “Outer product processor using polarization encoding,” Appl. Opt. 29, 275–283 (1990). [CrossRef] [PubMed]
  4. A. J. David, B. E. A. Saleh, “Optical implementation of the Hopfield algorithm using correlation,” Appl. Opt. 29, 1063–1064 (1990). [CrossRef] [PubMed]
  5. S. H. Lee, “Optical implementation of digital algorithms,” Opt. Eng. 25, 69–75 (1986). [CrossRef]
  6. M. Wu, S. Zhou, J. Cai, G. Chin, “Optical binary image algebra processor,” Opt. Commun. 86, 454–460 (1991). [CrossRef]
  7. Z. Zhu, L. Liu, “Optical cellular continuous-logic array for gray-scale image processing,” Appl. Opt. 32, 3676–3683 (1993). [CrossRef] [PubMed]
  8. K.-S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): experimental implementation,” Appl. Opt. 32, 166–173 (1993). [CrossRef] [PubMed]
  9. M. Fukui, K. Kitayama, “Image logic algebra and its optical implementation,” Appl. Opt. 31, 581–591 (1992). [CrossRef] [PubMed]
  10. E. Ochoa, J. P. Allebach, D. W. Sweeney, “Optical median filtering using threshold decomposition,” Appl. Opt. 26, 252–260 (1987). [CrossRef] [PubMed]
  11. S. Zhang, M. A. Karim, “Euclidean distance transform by stack filters,” IEEE Signal Process. Lett. 6, 253–256 (1999). [CrossRef]
  12. F. Y. Shih, O. R. Mitchell, “A mathematical morphology approach to Euclidean distance transformation,” IEEE Trans. Image Process. 1, 197–204 (1992). [CrossRef] [PubMed]
  13. Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “Compact parallel real-time programmable optical morphological image processor,” Opt. Lett. 14, 981–983 (1989). [CrossRef] [PubMed]
  14. J. Garcia, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993). [CrossRef] [PubMed]
  15. M. Gedziorowski, J. Garcia, “Programmable optical–digital processor for rank order and morphological filtering,” Opt. Commun. 119, 207–217 (1995). [CrossRef]
  16. R. Schaefer, D. Casasent, “Optical implementation of gray scale morphology,” in Nonlinear Image Processing III, E. R. Dougherty, T. Astula, C. G. Boncelet, eds., Proc. SPIE1658, 287–296 (1992).
  17. A. Fedor, M. O. Freemen, “Optical multiscale morphological processor using a complex-valued kernel,” Appl. Opt. 31, 4042–4050 (1992). [CrossRef] [PubMed]
  18. Z. Yao, M. Wu, G. Ji, G. Huang, Y. Yan, “New optoelectronic morphological scheme for multiobject recognition,” Opt. Eng. 33, 3447–3455 (1994). [CrossRef]
  19. L. Liu, “Morphological hit-or-miss transform for binary and gray-tone image processing and its optical implementation,” Opt. Eng. 33, 3447–3455 (1994). [CrossRef]
  20. R. Buczynski, V. Baukens, T. Szoplik, A. Goulet, N. Debaes, A. Kirk, P. Heremans, R. Vouncks, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optoelectronic transceiver elements,” IEEE Trans. Photon. Technol. Lett. 11, 367–369 (1999). [CrossRef]
  21. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  22. B. J. H. Verwer, P. W. Verbeek, S. T. Dekker, “An efficient uniform cost algorithm applied to distance transforms,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 425–429 (1989). [CrossRef]
  23. D. W. Paglieroni, “A unified distance transform algorithm and architecture,” Mach. Vision Appl. 5, 47–55 (1992). [CrossRef]
  24. H. Breu, J. Gil, D. Kirkpatrick, M. Werman, “Linear time Euclidean distance transform algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 17, 529–533 (1995). [CrossRef]
  25. W. Guan, S. Ma, “A list-processing approach to compute Voronoi diagrams and the Euclidean distance transform,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 757–761 (1998). [CrossRef]
  26. F. Y. Shih, O. R. Mitchell, “Threshold decomposition of gray-scale morphology into binary morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 31–42 (1989). [CrossRef]
  27. P. Garcia-Martinez, D. Mas, J. Garcia, C. Ferreira, “Nonlinear morphological correlation: optoelectronic implementation,” Appl. Opt. 37, 2112–2118 (1998). [CrossRef]
  28. P. Maragos, “Morphological correlation and mean absolute error,” in ICASSP-89: 1989 International Conference on Acoustic, Speech and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 3, pp. 1568–1571.
  29. P. Maragos, “Optimal morphological approaches to image matching and object detection,” in Proceedings of the Second International Conference on Computer Vision, Tampa, Fla., 5–8 December 1988, pp. 695–699.
  30. L. Guibert, Y. Petillot, J.-L. de Bougrenet de la Tocnaye, “Real-time demonstration of an on-board nonlinear joint transform correlator system,” Opt. Eng. 36, 820–824 (1997). [CrossRef]
  31. T. J. Grycewicz, “Experimental demonstration of a binary single-lens joint transform correlator using chirp-modulated inputs,” Opt. Eng. 36, 814–819 (1997). [CrossRef]
  32. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid-crystal TV-based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987). [CrossRef] [PubMed]
  33. J. Li, J. Hu, Y. Wang, “Experimental investigation of a real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3306 (1994). [CrossRef]
  34. H.-H. Chang, H. Yan, “Skeletonization of binary digital patterns using a fast Euclidean distance transform,” Opt. Eng. 35, 1003–1008 (1996). [CrossRef]
  35. C. Arcelli, G. Sannid di Baja, “A width-independent fast thinning algorithm,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 463–474 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited