OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 1042–1048

Investigation of Two-Photon-Induced Polarization Spectroscopy of the a-X (1, 0) Transition in Molecular Nitrogen at Elevated Pressures

Clemens F. Kaminski and Thomas Dreier  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 1042-1048 (2000)
http://dx.doi.org/10.1364/AO.39.001042


View Full Text Article

Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon-induced polarization spectroscopy of molecular nitrogen in the <i>a</i><sup>1</sup>Π<sub><i>g</i></sub>(ν′ =) ← <i>X</i><sup>1</sup>Σ<sub><i>g</i></sub><sup>+</sup> (ν″ =) system near 283 nm was performed, and its signal dependence investigated over the pressure range from 1.2 to 5 bars at 300 K. A significant increase of the signal intensity with pressure beyond the expected square law for a two-photon process was observed for pure nitrogen. Similar behavior was also found for a constant nitrogen partial pressure with increasing partial pressures of argon buffer gas. In both cases the spectral linewidth of the excited transitions increased dramatically with overall pressure. A possible explanation is given for the observed behavior in terms of contributions to the nonlinear susceptibility of the medium from the population of one-photon resonantly absorbing excited-state nitrogen and ground state N<sub>2</sub><sup>+</sup> ions created in the multiphoton absorption process at the high laser intensities required.

© 2000 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5440) Optical devices : Polarization-selective devices
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Citation
Clemens F. Kaminski and Thomas Dreier, "Investigation of Two-Photon-Induced Polarization Spectroscopy of the a-X (1, 0) Transition in Molecular Nitrogen at Elevated Pressures," Appl. Opt. 39, 1042-1048 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-1042


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  2. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweener, and N. M. Laurendeau, “Two-photon excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365–367 (1983).
  3. J. E. M. Goldsmith, “Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy,” in Proceedings of the 20th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.
  4. U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects,” Appl. Opt. 30, 2990–3002 (1991).
  5. U. Westblom and M. Aldén, “Laser-induced fluorescence detection of NH3 with the use of two-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990).
  6. J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
  7. K. C. Smyth and P. J. H. Tjossem, “Signal detection efficiency in multiphoton ionization flame measurements,” Appl. Opt. 29, 4891–4898 (1990).
  8. M. Aldén, H. Edner, and S. Wallin, “Simultaneous spatially resolved NO and NO2 measurements using one- and two-photon laser-induced fluorescence,” Opt. Lett. 10, 529–531 (1985).
  9. T. Ebata, A. Fujii, and M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
  10. C. F. Kaminski, B. Löfstedt, R. Fritzon, and M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.
  11. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1991).
  12. R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, and T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE 113, 80–87 (1977).
  13. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
  14. W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983).
  15. K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
  16. B. Löfstedt, R. Fritzon, and M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996).
  17. K. Nyholm, “Measurements of OH rotational temperatures in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
  18. K. Nyholm, R. Fritzon, and M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
  19. T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
  20. K. Danzmann, K. Grützmacher, and B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
  21. J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
  22. A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
  23. N. van Veen, P. Brewer, P. Das, and R. Bersohn, “Detection of the 1Πg(ν′ = 0, 1) ← X 1Πg(ν″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
  24. C. F. Kaminski, B. Löfstedt, Fritzon, and M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
  25. G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, and B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
  26. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, Mass., 1988).
  27. L. A. Rahn, L. J. Zych, and P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
  28. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  29. D. R. Crosley and G. P. Smith, “Two-photon spectroscopy of the A 2Σ+–X 2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
  30. P. J. H. Tjossem, and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
  31. D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
  32. S. M. Gladkov, N. I. Koroteev, M. V. Rychev, and O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).
  33. Y. Prior, A. R. Bogdan, M. Dagenais, and N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
  34. W. R. Garret and Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
  35. W. G. Mallard, J. H. Miller, and K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited