OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 887–896

Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space

Bo-Cai Gao, Marcos J. Montes, Ziauddin Ahmad, and Curtiss O. Davis  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 887-896 (2000)
http://dx.doi.org/10.1364/AO.39.000887


View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 µm. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.

© 2000 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6550) Spectroscopy : Spectroscopy, visible

History
Original Manuscript: June 9, 1999
Revised Manuscript: December 2, 1999
Published: February 20, 2000

Citation
Bo-Cai Gao, Marcos J. Montes, Ziauddin Ahmad, and Curtiss O. Davis, "Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space," Appl. Opt. 39, 887-896 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985). [CrossRef] [PubMed]
  2. B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993). [CrossRef]
  3. B.-C. Gao, C. O. Davis, “Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 132–141 (1997). [CrossRef]
  4. C. O. Davis, K. Carder, “Requirements driven design of an imaging spectrometer system for characterization of the coastal environment,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 322–329 (1997). [CrossRef]
  5. T. Wilson, C. O. Davis, “Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 2–10 (1998). [CrossRef]
  6. C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998). [CrossRef]
  7. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  8. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef] [PubMed]
  9. H. R. Gordon, M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  10. R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997). [CrossRef]
  11. Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982). [CrossRef]
  12. D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990). [CrossRef]
  13. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17,081–17,106 (1997). [CrossRef]
  14. D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997). [CrossRef]
  15. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992). [CrossRef]
  16. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  17. W. Ridgway, Code 913, NASA Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1996).
  18. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984). [CrossRef]
  19. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef] [PubMed]
  20. L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997). [CrossRef]
  21. K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993). [CrossRef]
  22. M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993). [CrossRef]
  23. R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited