OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 7 — Mar. 1, 2000
  • pp: 1202–1209

Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements

Jan S. Dam, Torben Dalgaard, Paul Erik Fabricius, and Stefan Andersson-Engels  »View Author Affiliations


Applied Optics, Vol. 39, Issue 7, pp. 1202-1209 (2000)
http://dx.doi.org/10.1364/AO.39.001202


View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new, to our knowledge, method for extracting optical properties from integrating sphere measurements on thin biological samples. The method is based on multivariate calibration techniques involving Monte Carlo simulations, multiple polynomial regression, and a Newton–Raphson algorithm for solving nonlinear equation systems. Prediction tests with simulated data showed that the mean relative prediction error of the absorption and the reduced scattering coefficients within typical biological ranges were less than 0.3%. Similar tests with data from integrating sphere measurements on 20 dye–polystyrene microsphere phantoms led to mean errors less than 1.7% between predicted and theoretically calculated values. Comparisons showed that our method was more robust and typically 5–10 times as fast and accurate as two other established methods, i.e., the inverse adding–doubling method and the Monte Carlo spline interpolation method.

© 2000 Optical Society of America

OCIS Codes
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.4760) Materials : Optical properties
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: September 28, 1999
Revised Manuscript: December 3, 1999
Published: March 1, 2000

Citation
Jan S. Dam, Torben Dalgaard, Paul Erik Fabricius, and Stefan Andersson-Engels, "Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements," Appl. Opt. 39, 1202-1209 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-7-1202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Anderson, P. Sekelj, “Light-absorbed and scattering properties of non-haemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967). [CrossRef] [PubMed]
  2. A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photopchem. Photobiol. 65, 366–373 (1997). [CrossRef]
  3. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1998). [CrossRef]
  4. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldback, H.-J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998). [CrossRef]
  5. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995). [CrossRef] [PubMed]
  6. W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996). [CrossRef] [PubMed]
  7. A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.
  8. H. C. van de Hulst, Multiple Light Scattering, Vols. I and II, (Academic, New York, 1980).
  9. R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993). [CrossRef]
  10. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo Simulations of deeply penetrating neutral particles,” J. Comp. Physiol. 81, 137–150 (1989).
  11. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. B. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “A double integrating sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  12. P. Kubelka, “New contributions to the optics of intensely light scattering materials. Part I,” J. Opt. Soc. Am. A 4, 448–457 (1948).
  13. J. Reichmann, “Determination of absorption and scattering coefficients for nonhomogeneous media. 1. Theory,” Appl. Opt. 12, 1811–1815 (1973). [CrossRef]
  14. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef] [PubMed]
  15. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near Infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998). [CrossRef] [PubMed]
  16. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  17. S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, New York, 1997), Chap. 6.
  18. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  19. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997). [CrossRef] [PubMed]
  20. A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998). [CrossRef]
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited