OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 8 — Mar. 10, 2000
  • pp: 1223–1232

Design, Fabrication, and Performance of Preferential-Order Volume Grating Waveguide Couplers

Stephen M. Schultz, Elias N. Glytsis, and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 39, Issue 8, pp. 1223-1232 (2000)

View Full Text Article

Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Both a nonfocusing and a focusing preferential-order volume grating waveguide coupler were designed, fabricated, and tested. These volume grating couplers are designed to outcouple a 633-nm wave guided in an adjacent polyimide waveguide film. The slanted-fringe volume gratings are recorded holographically by the interference of two 364-nm waves. The dynamics of the holographic photopolymer HRF600X001 are investigated in relation to the interaction with the guided wave. The fabricated couplers exhibited a preferential coupling of 98%, a spatial coupling rate of 3.6 mm−1, and a coupling efficiency of 95%. The focusing grating coupler focused the outcoupled beam to a focal line with a full width at half-maximum of 10.49 μm located 25 mm above the grating.

© 2000 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(050.7330) Diffraction and gratings : Volume gratings
(130.0130) Integrated optics : Integrated optics

Stephen M. Schultz, Elias N. Glytsis, and Thomas K. Gaylord, "Design, Fabrication, and Performance of Preferential-Order Volume Grating Waveguide Couplers," Appl. Opt. 39, 1223-1232 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. Streibl, R. Volkel, J. Schwider, P. Habel, and N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
  2. S. H. Song and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
  3. C. Zhao and R. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” Appl. Opt. 36, 2537–2544 (1997).
  4. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
  5. S. Nishiwaki, J. Asada, and S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
  6. S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, and J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent 5,200,939 (6 April 1993).
  7. H. Sunagawa, T. Suhara, and H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent 5,153,860 (6 October 1992).
  8. N. Eriksson, M. Hagberg, and A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
  9. S. Kristjansson, M. Li, N. Eriksson, K. Killius, and A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
  10. S. Ura, H. Sunagawa, T. Suhara, and H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
  11. S. Ura, M. Shinohara, T. Suhara, and H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
  12. T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, and S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
  13. T. Suhara, N. Nozaki, and H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.
  14. N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
  15. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. Zelinski, “Design and fabrication of a single leakage channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
  16. R. L. Roncone, L. Li, and J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921 (1993).
  17. I. A. Avrutskii, A. S. Svakhin, and V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).
  18. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
  19. J. C. Brazas, L. Li, and A. L. Mckeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995).
  20. M. Hagberg, T. Kjellberg, N. Eriksson, and A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
  21. M. Li and S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
  22. T. Liao, S. Sheard, M. Li, J. Zhu, and P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
  23. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
  24. Q. Huang and P. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
  25. V. Weiss, I. Finkelstein, E. Millul, and S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE 3135, 136–143 (1997).
  26. W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1555, 256–267 (1991).
  27. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
  28. S. Schultz, E. N. Glytsis, and T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
  29. U. Rhee, H. Caulfield, J. Shamir, C. Vikram, and M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
  30. U. Rhee, H. Caulfield, C. Vikram, and J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
  31. G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, and G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).
  32. J. Y. Son, V. V. Smirnov, H. W. Jeon, and I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE 2951, 74–79 (1996).
  33. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 14, 1075–1077 (1995).
  34. R. K. Kostuk, “Dynamic hologram recording characteristics in DuPont photopolymers,” Appl. Opt. 38, 1357–1363 (1999).
  35. S. M. Schultz, “High efficiency volume grating coupler,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, 1999).
  36. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
  37. Zemax Optical Design Program User’s Guide (Focus Software, Inc., P.O. Box 18228, Tucson, Ariz. 85731, 1999).
  38. S. Solimeno, B. Crosignani, and P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited