OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 8 — Mar. 10, 2000
  • pp: 1323–1340

Optimized Forward Model and Retrieval Scheme for MIPAS Near-Real-Time Data Processing

Marco Ridolfi, Bruno Carli, Massimo Carlotti, Thomas von Clarmann, Bianca M. Dinelli, Anu Dudhia, Jean-Marie Flaud, Michael Höpfner, Paul E. Morris, Piera Raspollini, Gabriele Stiller, and Robert J. Wells  »View Author Affiliations


Applied Optics, Vol. 39, Issue 8, pp. 1323-1340 (2000)
http://dx.doi.org/10.1364/AO.39.001323


View Full Text Article

Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optimized code to perform the near-real-time retrieval of profiles of pressure, temperature, and volume mixing ratio (VMR) of five key species (O<sub>3</sub>, H<sub>2</sub>O, HNO<sub>3</sub>, CH<sub>4</sub>, and N<sub>2</sub>O) from infrared limb spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment on board the European Space Agency (ESA) Environmental Satellite ENVISAT-1 was developed as part of a ESA-supported study. The implementation uses the global fit approach on selected narrow spectral intervals (microwindows) to retrieve each profile in sequence. The trade-off between run time and accuracy of the retrieval was optimized from both the physical and the mathematical points of view, with optimizations in the program structure, in the radiative transfer model, and in the computation of the retrieval Jacobian. The attained performances of the retrieval code are noise error on temperature <2 K at all the altitudes covered by the typical MIPAS scan (8–53 km with 3-km resolution), noise error on tangent pressure <3%, and noise error on VMR of the target species <5% at most of the altitudes covered by the standard MIPAS scan, with a total run time of less than 1 min on a modern workstation.

© 2000 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Marco Ridolfi, Bruno Carli, Massimo Carlotti, Thomas von Clarmann, Bianca M. Dinelli, Anu Dudhia, Jean-Marie Flaud, Michael Höpfner, Paul E. Morris, Piera Raspollini, Gabriele Stiller, and Robert J. Wells, "Optimized Forward Model and Retrieval Scheme for MIPAS Near-Real-Time Data Processing," Appl. Opt. 39, 1323-1340 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-8-1323


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. ESA, “ENVISAT—MIPAS: an instrument for atmospheric chemistry and climate research,” ESA SP-1229 (European Space Agency, ESTEC, Noordwijk, The Netherlands, 2000).
  2. M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 29–43.
  3. R. L. Lachance, “MIPAS level 1B algorithm technical baseline document: an overview,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 51–63.
  4. T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, and G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” Final Report of ESA Contract Number 12054/96/NL/CN (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).
  5. G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, and J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.
  6. T. von Clarmann and G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
  7. M. Carlotti and M. Ridolfi, “Derivation of temperature and pressure from submillimetric limb observations,” Appl. Opt. 38, 2398–2409 (1999).
  8. T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith and K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.
  9. M. Carlotti, “Global-fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988).
  10. T. B. McKee, R. I. Whitman, and J. J. Lambiotte, Jr., “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” NASA Rep. TN D-5252 (NASA, Washington, DC, 1969).
  11. A. Goldman and R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
  12. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).
  13. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).
  14. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, San Diego, Calif., 1984).
  15. D. S. Sivia, Data Analysis: A Bayesian Tutorial (Clarendon, Oxford, UK, 1998).
  16. R. E. Kalman, “Algebraic aspects of the generalized inverse of a rectangular matrix,” in Proceedings of Advanced Seminar on Generalized Inverse and Applications, M. Z. Nashed, ed. (Academic, San Diego, Calif., 1976), pp. 111–124.
  17. K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164–168 (1944).
  18. D. W. Marquardt, “An algorithm for the least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
  19. W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).
  20. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
  21. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
  22. U.S. Government Document DMATR 8350.2, “Defense World Geodetic System 1984: its definition and relationship with local geodetic systems” (U.S. Department of Defense, Washington, D.C., 1994).
  23. J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge University, Cambridge, UK, 1986).
  24. L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, and S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
  25. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, San Diego, Calif., 1972).
  26. L. Delbouille and G. Roland, “Assessement of finite field-of-view effects on MIPAS ILS and review of resolution enhancement techniques,” Answer to ESA NTO/ME/1573, Purchase Order 130605 (University of Liège, Liège, Belgium, 1995).
  27. R. H. Norton and R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976); errata 67, 419 (1977).
  28. A. N. Tikhonov and V. Y. Arsenin, “Solutions of ill-posed problems,” (Winston, Washington, D.C., 1977).
  29. M. Carlotti and B. Carli, “Approach to the design and data analysis of a limb-scanning experiment,” Appl. Opt. 33, 3237–3249 (1994).
  30. T. von Clarmann, H. Fischer, and H. Oelhaf, “Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models,” Appl. Opt. 30, 2924–2925 (1991).
  31. B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, and G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” Final Report of ESA Study 12055–96-NL-CN (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).
  32. D. P. Edwards and L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
  33. P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Prop. AP-23, 498–506 (1975).
  34. M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, and J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.
  35. D. P. Edwards, “GENLN2: a general line-by-line atmospheric transmittance and radiance model. Version 3.0 description and users guide,” Report NCAR/TN-367+STR (National Center for Atmospheric Research, Boulder, Colo., 1992).
  36. P. Edwards, “High level algorithm definition document of the MIPAS reference forward model,” ESA Report PO-TN-OXF-GS-0004 (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited