OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 11 — Apr. 10, 2001
  • pp: 1822–1826

Holographic image storage in Eu3+-doped alkali aluminosilicate glasses

Abdulatif Y. Hamad and James P. Wicksted  »View Author Affiliations


Applied Optics, Vol. 40, Issue 11, pp. 1822-1826 (2001)
http://dx.doi.org/10.1364/AO.40.001822


View Full Text Article

Enhanced HTML    Acrobat PDF (2658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that holographic information can be stored in Eu3+-doped alkali aluminosilicate glasses. The holograms were developed by a two-beam mixing configuration with a write-beam wavelength (465.8 nm) corresponding to the 7F05D0 transition of the Eu3+ ions. The images were reconstructed either with the wavelength used to record them or with wavelengths below this transition (543.5 and 632.8 nm). We stored clear holographic images using a total writing power of 5 mW and an exposure time of 20 s. In addition, clear holograms were recorded with an exposure time of 200 ms when 100 mW of the writing power was used. The exposure time and the writing power required to obtain clear holographic images are dependent on the Eu3+ concentration.

© 2001 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.2750) Materials : Glass and other amorphous materials
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(190.7070) Nonlinear optics : Two-wave mixing
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials

History
Original Manuscript: January 10, 2000
Revised Manuscript: January 2, 2001
Published: April 10, 2001

Citation
Abdulatif Y. Hamad and James P. Wicksted, "Holographic image storage in Eu3+-doped alkali aluminosilicate glasses," Appl. Opt. 40, 1822-1826 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-11-1822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, Vol. 20 of Topics in Applied Physics, H. M. Smith, ed. (Springer-Verlag, New York, 1977), p. 101. [CrossRef]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  3. F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991). [CrossRef]
  4. H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990). [CrossRef]
  5. X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997). [CrossRef]
  6. E. G. Behrens, R. C. Powell, D. H. Blackburn, “Optical applications of laser-induced gratings in Eu-doped glasses,” Appl. Opt. 29, 1619–1624 (1990). [CrossRef] [PubMed]
  7. A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999). [CrossRef]
  8. F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986). [CrossRef]
  9. R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).
  10. E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989). [CrossRef]
  11. E. G. Behrens, R. C. Powell, D. H. Blackburn, “Characteristics of laser-induced gratings in Pr3+ and Eu3+-doped silicate glasses,” J. Opt. Soc. Am. B 7, 1437–1444 (1990). [CrossRef]
  12. A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998). [CrossRef]
  13. G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998). [CrossRef]
  14. A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994). [CrossRef]
  15. A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997). [CrossRef]
  16. A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  17. J. Hong, “Applications of photorefractive crystals for optical neural networks,” Opt. Quantum Electron. 25, 511–568 (1993). [CrossRef]
  18. T. Y. Chang, J. H. Hong, F. Vachss, R. McGraw, “Studies of the dynamic range of photorefractive gratings in ferroelectric crystals,” J. Opt. Soc. Am. B 9, 1744–1751 (1992). [CrossRef]
  19. M. Austin, “The dependence of image quality of holographic real images on the reconstruction geometry,” J. Phys. D 17, 1953–1959 (1984). [CrossRef]
  20. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.
  21. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited