OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1897–1906

Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects

Zhouling Wu, Christopher J. Stolz, Shannon C. Weakley, James D. Hughes, and Qiang Zhao  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 1897-1906 (2001)
http://dx.doi.org/10.1364/AO.40.001897


View Full Text Article

Acrobat PDF (4883 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A variety of microscopic techniques were employed to characterize fluence-limiting defects in hafnia–silica multilayer coatings manufactured for the National Ignition Facility, a fusion laser with a wavelength of 1.053 μm and a pulse width of 3 ns. Photothermal microscopy, with the surface thermal lens effect, was used to map the absorption and thermal characteristics of 3 mm × 3 mm areas of the coatings. High-resolution subaperture scans, with a 1-μm step size and a 3-μm pump-beam diameter, were conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy were used to identify defects and characterize their topography. The defects were then irradiated by a damage testing laser (1.06 μm and 3 ns) in single-shot mode until damage occurred. The results were analyzed to determine the role of nodular and nonnodular defects in limiting the damage thresholds of the multilayer coatings. It was found that, although different types of defect were present in these coatings, the fluence-limiting ones had the highest photothermal signals (up to 126× over the host coating). The implication of this study is that coating process improvements for hafnia–silica multilayer coatings should have a broader focus than just elimination of source ejection, since high photothermal signals frequently occur at nodule-free regions. The study also demonstrates that, for optics subject to absorption-induced thermal damage, photothermal microscopy is an appropriate tool for nondestructive identification of fluence-limiting defects.

© 2001 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(350.5340) Other areas of optics : Photothermal effects

Citation
Zhouling Wu, Christopher J. Stolz, Shannon C. Weakley, James D. Hughes, and Qiang Zhao, "Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects," Appl. Opt. 40, 1897-1906 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-1897

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited