OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1911–1920

Dispersion effects in elliptical-core highly birefringent fibers

Waclaw Urbanczyk, Tadeusz Martynkien, and Wojtek J. Bock  »View Author Affiliations

Applied Optics, Vol. 40, Issue 12, pp. 1911-1920 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modal birefringence and its sensitivity to temperature and hydrostatic pressure were measured versus wavelength in three elliptical-core fibers and one fiber with stress-induced birefringence. We carried out the measurements in the spectral range from 633 to 843 nm by using interferometric methods. In fibers with elliptical cores all the measured parameters showed high chromatic dependence, whereas in fibers with stress-induced birefringence this dependence was weak. We modeled the dispersion characteristics of two elliptical-core fibers by using the modified perturbation approach first proposed by Kumar. The modification consists of introducing into the expression for the normalized propagation constants an additional perturbation term that contains information about stress-induced birefringence. The results of modeling show that the temperature and pressure sensitivity of elliptical-core fiber are associated primarily with variations in stress induced by these parameters. The agreement between measured and calculated values of sensitivity in the worst case was equal to 20% for modal birefringence and temperature sensitivity and 50% for pressure sensitivity. Lower agreement between measured and calculated values of pressure sensitivity is most probably associated with uncertainties in the material constants used in modeling.

© 2001 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining

Original Manuscript: July 16, 2000
Revised Manuscript: December 12, 2000
Published: April 20, 2001

Waclaw Urbanczyk, Tadeusz Martynkien, and Wojtek J. Bock, "Dispersion effects in elliptical-core highly birefringent fibers," Appl. Opt. 40, 1911-1920 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316. [CrossRef]
  2. W. J. Bock, W. Urbanczyk, “Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998). [CrossRef]
  3. N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998). [CrossRef]
  4. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986). [CrossRef]
  5. S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983). [CrossRef]
  6. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, 1995).
  7. S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982). [CrossRef]
  8. S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982). [CrossRef] [PubMed]
  9. D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982). [CrossRef]
  10. W. Urbanczyk, W. J. Bock, “Influence of dispersion on sensitivity of highly birefringent fibers to temperature and hydrostatic pressure,” Appl. Opt. 37, 3176–3180 (1998). [CrossRef]
  11. W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994). [CrossRef] [PubMed]
  12. A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984). [CrossRef]
  13. M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996). [CrossRef]
  14. M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 75, 68–73 (1994). [CrossRef]
  15. W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993). [CrossRef] [PubMed]
  16. W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).
  17. F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993). [CrossRef]
  18. D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).
  19. R. Kaul, “Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber,” Opt. Lett. 20, 1000–1001 (1995). [CrossRef] [PubMed]
  20. W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode fibers,” Appl. Opt. 29, 3484–3488 (1990). [CrossRef] [PubMed]
  21. I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979). [CrossRef]
  22. N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980). [CrossRef]
  23. J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982). [CrossRef]
  24. N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980). [CrossRef] [PubMed]
  25. H. Scholze, Glass. Nature, Structure, and Properties (Springer-Verlag, New York, 1991), pp. 246–294.
  26. O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).
  27. K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981). [CrossRef]
  28. J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981). [CrossRef]
  29. Y. Verbant, “Polymers for switching, fibers for sensing,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, 1996).
  30. N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, London, 1986).
  31. A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985). [CrossRef]
  32. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978). [CrossRef]
  33. W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959). [CrossRef]
  34. G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994). [CrossRef]
  35. S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979). [CrossRef]
  36. K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993). [CrossRef]
  37. M. E. Lines, “Physical origin of the temperature dependence of chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993). [CrossRef]
  38. Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).
  39. T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000). [CrossRef]
  40. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993). [CrossRef]
  41. K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991). [CrossRef]
  42. K. S. Chiang, “Pressure-induced birefringence in a coated highly birefringent optical fibers,” J. Lightwave Technol. LT-8, 1850–1855 (1990). [CrossRef]
  43. R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992). [CrossRef]
  44. V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited