OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1931–1941

Characterization of excimer lasers for application to lenslet array homogenizers

Ying Lin, George N. Lawrence, and Jesse Buck  »View Author Affiliations

Applied Optics, Vol. 40, Issue 12, pp. 1931-1941 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the best method of characterizing high-divergence lasers, such as excimer lasers, to suppress fine-scale intensity nonuniformity that is due to coherence effects of lenslet homogenizers. We show by a detailed analysis of the lenslet homogenizer that, for highest accuracy, a direct measurement of the value of the autocorrelation function should be made at the separation p of the lenslet elements, identified as the critical spatial period. We show that the commonly used characterization of lasers by the 1/e2 width of the angular divergence is not the most accurate test and may overstate or understate the effectiveness of a given laser.

© 2001 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(050.1940) Diffraction and gratings : Diffraction
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(140.2180) Lasers and laser optics : Excimer lasers

Original Manuscript: June 6, 2000
Revised Manuscript: November 27, 2000
Published: April 20, 2001

Ying Lin, George N. Lawrence, and Jesse Buck, "Characterization of excimer lasers for application to lenslet array homogenizers," Appl. Opt. 40, 1931-1941 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Valiev, L. V. Velikov, G. S. Volkov, D. Y. Zaroslov, “The optimization of excimer lasers radiation characteristics for projection lithography,” in Proceedings of the 1989 International Symposium on MicroProcess Conference, (Japan Society of Applied Physics, Tokyo, 1989), pp. 37–42.
  2. Y. Ozaki, K. Takamoto, “Cylindrical fly’s eye lens for intensity redistribution of an excimer laser beam,” Appl. Opt. 28, 106–110 (1989). [CrossRef] [PubMed]
  3. C. Zhou, D. Lin, H. Yao, “Calculation and simulation of intensity distribution of uniform-illumination optical systems for submicron photolithography,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 652–657 (1997). [CrossRef]
  4. C.-Y. Han, Y. Ishi, K. Murata, “Reshaping collimated laser beams with Gaussian profile to uniform profiles,” Appl. Opt. 22, 3644–3647 (1983). [CrossRef] [PubMed]
  5. X. Deng, X. Liang, Z. Chen, W. Yu, R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986). [CrossRef] [PubMed]
  6. K. N. Yokohama, N. S. Kawasaki, “Illumination optical apparatus and method having a wavefront splitter and an optical integrator,” U.S. patent5,815,249 (3September1998).
  7. S. Kawata, I. Hikima, Y. Ichihara, S. Watanabe, “Spatial coherence of KrF excimer lasers,” Appl. Opt. 31, 387–396 (1992). [CrossRef] [PubMed]
  8. B. A. See, “Measuring laser divergence,” Opt. Laser Technol. 29, 109–110 (1997). [CrossRef]
  9. A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993). [CrossRef]
  10. D. L. Wright, S. Guggenheimer, “Status of ISO/TC 172/SC9/WG1 on standardization of the measurement of beam widths, beam divergence, and propagation factor,” in Laser Energy Distribution Profiles: Measurement and Applications, J. M. Darchuk, ed., Proc. SPIE1834, 2–17 (1992). [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 265–268.
  12. K. Takamoto, “Young’s interference fringes with multiple-transverse-mode laser illumination,” J. Opt. Soc. Am. A 6, 1137–1141 (1989). [CrossRef]
  13. J. C. Wyant, “Double frequency grating lateral shear interferometer,” Appl. Opt. 12, 2057–2060 (1973). [CrossRef] [PubMed]
  14. Z. B. Liu, J. P. Xie, K. Kuroda, I. Ogura, “Holographic double frequency grating shearing interferometer and its application to measurement of spatial coherence,” Seisan Kenkyu 36, 192–194 (1984).
  15. Z. Karny, S. Lavi, O. Kafri, “Direct determination of the number of transverse modes of a light beam,” Opt. Lett. 8, 409–411 (1983). [CrossRef] [PubMed]
  16. A. Cordero-Davila, E. Luna-Aguilar, S. Vazquez-Montiel, S. Zarate-Vazquez, M. E. Percino-Acarias, “Ronchi test with a square grid,” Appl. Opt. 37, 672–675 (1998). [CrossRef]
  17. K. Lizuka, Engineering Optics (Springer-Verlag, New York, 1987), pp. 86–88.
  18. B. Ya Zel’dovich, N. F. Pilipesky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985), pp. 76–84.
  19. Y. Lin, T. J. Kessler, G. N. Lawrence, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett. 20, 764–766 (1995). [CrossRef] [PubMed]
  20. Y. Lin, J. Buck, “Numerical modeling of the excimer beam,” in Metrology, Inspection, and Process Control for Microlithography XIII, B. Singh, ed., Proc. SPIE3677, 700–710 (1999). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 321.
  22. J. Gaskill, Linear Systems, Transforms, and Optics (Academic, New York, 1976), p. 139.
  23. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), pp. 99–100.
  24. Ref. 11, pp. 508–512.
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 86–88.
  26. glad is a laser and physical optics computer modeling program and is a product of Applied Optics Research, 1087 Lewis River Road #217, Woodland, Wash. 98674.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited