OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1989–2003

Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer

Thomas Ingold, Christian Mätzler, Christoph Wehrli, Alain Heimo, Niklaus Kämpfer, and Rolf Philipona  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 1989-2003 (2001)
http://dx.doi.org/10.1364/AO.40.001989


View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78°, 9.68°, 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

© 2001 Optical Society of America

OCIS Codes
(010.4950) Atmospheric and oceanic optics : Ozone
(040.7190) Detectors : Ultraviolet
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(350.2460) Other areas of optics : Filters, interference

History
Original Manuscript: March 23, 2000
Revised Manuscript: December 11, 2000
Published: April 20, 2001

Citation
Thomas Ingold, Christian Mätzler, Christoph Wehrli, Alain Heimo, Niklaus Kämpfer, and Rolf Philipona, "Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer," Appl. Opt. 40, 1989-2003 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-1989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Johnston, “Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust,” Science 173, 517–522 (1971). [CrossRef] [PubMed]
  2. P. J. Crutzen, “Ozone production rates in an oxygen–hydrogen–nitrogen oxide atmosphere,” J. Geophys. Res. 76, 7311–7327 (1971). [CrossRef]
  3. M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes, chlorine atom catalysed destruction of ozone,” Nature 249, 810–812 (1974). [CrossRef]
  4. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project, (World Meteorological Organization, Geneva, 1995).
  5. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project, (World Meteorological Organization, Geneva, 1998).
  6. J. C. Farman, G. Gardiner, J. D. Shanklin, “Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction,” Nature (London) 315, 207–210 (1985). [CrossRef]
  7. S. Solomon, “Stratospheric ozone depletion: a review of concepts and history,” Rev. Geophys. 37, 275–316 (1999). [CrossRef]
  8. G. M. B. Dobson, D. N. Harrison, “Measurement of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions,” Proc. R. Soc. London Ser. A 110, 660–693 (1926). [CrossRef]
  9. G. M. B. Dobson, “Observers’ handbook for the ozone spectrometer,” Ann. Int. Geophys. Year 5, 90–113 (1957).
  10. W. D. Komhyr, “Operations handbook—ozone observations with a Dobson spectrophotometer,” in WMO Global Ozone Research and Monitoring Project, World Meteorological Organization, ed., (World Meteorological Organization, Geneva, 1980).
  11. J. B. Kerr, C. T. McElroy, R. A. Olafson, “Measurement of ozone with the Brewer ozone spectrophotometer,” in Proceedings of the Quadrennial Ozone Symposium in Boulder, Colorado, J. London, ed. (National Center for Atmospheric Research, Boulder, Colo., 1981), pp. 74–79.
  12. J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, C. S. Zerefos, A. Ghazi, eds. (Reidel, Hingham, Mass., 1985), pp. 396–401.
  13. J. Stähelin, A. Renaud, J. Bader, R. McPeters, P. Viatte, B. Högger, V. Bugnion, M. Giroud, H. Schill, “Total ozone series at Arosa (Switzerland): homogenization and data comparison,” J. Geophys. Res. 34, 1977–1986 (1998).
  14. R. D. Bojkov, “Differences in Dobson spectrophotometer and filter ozonometer measurements of total ozone,” J. Appl. Meteorol. 8, 362–368 (1969). [CrossRef]
  15. J. Vanier, D. I. Wardle, “The effects of spectral resolution on total ozone measurements,” Q. J. R. Meteorol. Soc. 95, 395–399 (1969). [CrossRef]
  16. W. A. Matthews, R. E. Basher, G. J. Fraser, “Filter ozone spectrophotometer,” Pure Appl. Geophys. 112, 931–938 (1974). [CrossRef]
  17. R. A. Sutherland, R. D. McPeters, G. B. Findley, A. E. S. Green, “Sun photometry and spectral radiometry at wavelengths less than 360 nm,” J. Atmos. Sci. 32, 427–436 (1975). [CrossRef]
  18. R. E. Basher, W. A. Matthews, “Problems in the use of interference filters for spectrophotometric determination of total ozone,” J. Appl. Meteorol. 16, 795–802 (1977). [CrossRef]
  19. R. E. Basher, “The effect of bandwidth on filter instrument total ozone accuracy,” J. Appl. Meteorol. 16, 803–811 (1977). [CrossRef]
  20. G. J. Labow, L. E. Flynn, M. A. Rawlins, R. A. Beach, C. A. Simmons, C. N. Schubert, “Estimation of ozone with total ozone portable spectroradiometer instruments. I. Practical operation and comparisons,” Appl. Opt. 35, 6084–6089 (1996). [CrossRef] [PubMed]
  21. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments,” Appl. Opt. 35, 6514–6521 (1996). [CrossRef] [PubMed]
  22. C. Cordoba, A. Perez, I. Aguirre de Carcer, F. Jaque, D. Henriques, F. Carvalho, “Comparison of total ozone measurements from a differential optical absorption filter instrument and a Dobson spectrophotometer,” Int. J. Remote Sens. 18, 3473–3478 (1997). [CrossRef]
  23. D. S. Bigelow, J. R. Slusser, A. F. Beaubien, J. H. Gibson, “The USDA ultraviolet radiation monitoring program,” Bull. Am. Meteorol. Soc. 79, 601–615 (1998). [CrossRef]
  24. J. Slusser, J. Gibson, D. Bigelow, D. Kolinski, W. Mou, G. Koenig, A. Beaubien, “Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers,” Appl. Opt. 38, 1543–1551 (1999). [CrossRef]
  25. R. Philipona, R. A. Heimo, C. Fröhlich, C. Marty, A. Ohmura, C. Wehrli, “The Swiss atmospheric radiation monitoring program: CHARM,” presented at International Radiation Symposium IRS96, Fairbanks, Alaska, 19–24 August 1996.
  26. A. Heimo, R. Philipona, C. Fröhlich, C. Marty, A. Ohmura, “The Swiss atmospheric radiation monitoring network CHARM,” in Proceedings of the World Meteorological Organization Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-98), Casablanca, Morocco, 13–15 May, WMO/TD-877 (World Meteorological Organization, Geneva, 1998), pp. 291–294.
  27. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, C. G. Wellemeyer, C. J. Seftor, G. Jaross, O. Torres, L. Moy, G. Labow, W. Byerly, S. L. Taylor, T. Swissler, R. P. Cebula, Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Tech. Publ. 1998-206895 (Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Md., 1998).
  28. A. Hahne, A. Lefebvre, J. Callies, B. Christensen, “GOME—The development of a new instrument,” ESA Bull. 83 (European Space Agency Directorate for Observation of the Earth and Its Environment, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).
  29. World Meteorological Organization, “Recent progress in Sun photometry. Determination of the aerosol optical depth,” Environmental Pollution Monitoring and Research Programme 43, obtainable as (World Meteorological Organization, Geneva, 1986).
  30. World Meteorological Organization, “Report of the WMO workshop on the measurement of atmospheric optical depth and turbidity, Silver Spring, Md., 6–10 December,” B. Hicks, ed., , obtainable as (World Meteorological Organization, Geneva, 1993).
  31. J. Stähelin, H. Schill, B. Högger, P. Viatte, G. Levrat, A. Gamma, “Total ozone observation by Sun photometry at Arosa, Switzerland,” Opt. Eng. 34, 1977–1986 (1995). [CrossRef]
  32. B. Schmid, P. R. Spyak, S. F. Biggar, C. Wehrli, J. Sekler, T. Ingold, C. Mätzler, N. Kämpfer, “Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm,” Appl. Opt. 37, 3923–3941 (1998). [CrossRef]
  33. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, R. P. Cebula, “Nimbus7 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide,” NASA Ref. Publ. 1384 (Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Md., 1996).
  34. J. R. Herman, P. K. Bhartia, A. J. Krueger, R. D. McPeters, C. G. Wellemeyer, C. J. Seftor, G. Jaross, B. M. Schlesinger, O. Torres, G. Labow, W. Byerly, S. L. Taylor, T. Swissler, R. P. Cebula, X.-Y. Gu, “Meteor3 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide,” NASA Ref. Publication 1393 (Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 1996).
  35. A. J. Krueger, P. K. Bhartia, R. D. McPeters, J. R. Herman, C. G. Wellemeyer, G. Jaross, C. J. Seftor, O. Torres, G. Labow, W. Byerly, S. L. Taylor, T. Swissler, R. P. Cebula, “ADEOS Total Ozone Mapping Spectrometer (TOMS) data products user’s guide,” NASA Ref. Publ. 1998-206857 (Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Md., 1998).
  36. A. M. Bass, R. J. Paur, “The ultraviolet cross-sections of ozone. Measurements in atmospheric ozone,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, C. S. Zerefos, A. Ghazi, eds. (Reidel, Hingham, Mass., 1985), pp. 606–616.
  37. J.-C. Lambert, P. Peeters, A. Richter, N. A. J. Schutgens, Y. M. Timofeyev, T. Wagner, J. P. Burrows, N. F. Elansky, A. S. Elokhov, P. Gerard, J. Granville, A. M. Gruzdev, D. V. Ionov, V. V. Ionov, R. B. A. Koelemeijer, A. Ladstätter-Weissenmayer, C. Leue, D. Loyola, U. Platt, O. V. Postylyakov, A. M. Shalamiansky, P. C. Simon, P. Stammes, W. Thomas, M. Van Roozendael, M. Wenig, F. Wittrock, “ERS-2 GOME Data Products Delta Characterisation Report 1999: Validation Report for GOME Data Processor Upgrade: Level-0-to-1 Version 2.0 and Level-1-to-2 Version 2.7,” J.-C. Lambert, P. Skarlas, eds. (ESA/ESRIN, Frascati, Italy, 1999).
  38. J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross sections of O3 in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999). [CrossRef]
  39. R. Spurr, “GOME Level 1-to-2 Algorithms Description,” ER-TN-DLR-GO-0025, Iss./Rev. 2/A (Deutsches Zentrum für Luft- und Raumfahrt e.V., Deutsches Fernerkundungsdatenzentrum, Oberpfaffenhofen, Germany, 1996).
  40. A. von Bergen, W. Thomas, “GOME Data Processor Update Report for GDP 0-to-1 Version 2.0 and GDP 1-to-2 Version 2.7,” (Deutsches Zentrum für Luft- und Raumfahrt e.V., Deutsches Fernerkundungsdatenzentrum, Oberpfaffenhofen, Germany, 1999).
  41. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharaya, L. S. Rothmann, J. E. A. Selby, W. O. Gallery, S. A. Clough, “The Modtran 2/3 report and LOWTRAN 7 model,” (Phillips Laboratory, Hanscom Air Force Base, Mass., 1996).
  42. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  43. K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “Absolute absorption cross section measurements of ozone in the wavelength region 238–335 nm and the temperature dependence,” Planet. Space Sci. 36, 395–398 (1988). [CrossRef]
  44. M. Cacciani, A. Di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989). [CrossRef]
  45. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  46. F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989). [CrossRef] [PubMed]
  47. F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965). [CrossRef]
  48. A. K. Ångström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929). [CrossRef]
  49. H. Richner, “Grundlagen aerologischer Messungen speziell mittels der Schweizer Sonde SRS 400,” Veröffentlichungen der SMA-MeteoSchweiz Nr. 61 (SMA-MeteoSchweiz, Zürich, 1999).
  50. R. M. Goody, Y. L. Yung, Atmospheric Radiation, Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989).
  51. M. Van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quantum Spectrosc. Radiat. Transfer 52, 231–240 (1994). [CrossRef]
  52. M. Eisinger, J. P. Burrows, “Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument,” Geophys. Res. Lett. 25, 4177–4180 (1998). [CrossRef]
  53. J. Slusser, J. Gibson, D. Bigelow, D. Kolinski, P. Disterhoft, K. Lantz, A. Beaubien, “Langley method of calibrating UV filter radiometers,” J. Geophys. Res. 105, 4841–4850 (2000). [CrossRef]
  54. B. Schmid, C. Wehrli, “Comparison of sun photometer calibration by Langley technique and standard lamp,” Appl. Opt. 34, 4500–4512 (1995). [CrossRef] [PubMed]
  55. B. W. Forgan, “General method for calibrating Sun photometers,” Appl. Opt. 33, 4841–4850 (1994). [CrossRef] [PubMed]
  56. Instruments and Apparatus, Part 1. Measurement Uncertainty. ANSI/ASME Performance Test Codes 19.1-1985 (American Society of Mechanical Engineers, New York, 1986), pp. 23–25.
  57. H. H. Gränicher, Messung beendet–was nun?: Einführung und Nachschlagewerk für die Planung und Auswertung von Messungen (vdf Hochschulverlag AG an der ETH Zürich, Zürich, and Teubner, Stuttgart, 1994).
  58. J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, J. Brion, “Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995). [CrossRef]
  59. D. S. Bigelow, J. R. Slusser, “Establishing the stability of multifilter UV rotating shadow-band radiometers,” J. Geophys. Res. 105, 4829–4832 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited