OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2551–2560

Absolute intensities and pressure-broadening coefficients of 2-µm CO2 absorption features: intracavity laser spectroscopy

Jihong Geng, Jonathan I. Lunine, and George H. Atkinson  »View Author Affiliations


Applied Optics, Vol. 40, Issue 15, pp. 2551-2560 (2001)
http://dx.doi.org/10.1364/AO.40.002551


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The high detection sensitivity available from intracavity laser spectroscopy (ILS) is extended into the near infrared by solid-state laser systems operating with relatively narrow (∼0.002 µm) bandwidths for three CO2 absorption features of importance to an understanding of planetary atmospheres. The absolute intensities and pressure-broadening properties of the P(12), P(14), and P(16) lines of the Σ–Σ band (12°1–00°0) of CO2 (at 2.0129, 2.0136, and 2.0143 µm) are measured quantitatively by ILS with a Tm:YAG laser operating near 2.0 µm. The temperature dependencies of these absolute intensities and collisional-broadening parameters for these three CO2 features are also measured over the 110–300 K range. The 3.0-km equivalent absorption path length available from the ILS Tm:YAG system is used to enhance detection sensitivity by more than a factor of 1.5 × 104 while maintaining a physical sample cell path length of ∼20 cm. The enhanced detection sensitivity of ILS permits absolute intensities and collisional-broadening parameters to be measured from <1-Torr CO2 over a series of temperatures, conditions that emulate those found in the atmospheres of Mars, Triton, and Venus.

© 2001 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(300.6390) Spectroscopy : Spectroscopy, molecular
(350.1270) Other areas of optics : Astronomy and astrophysics

History
Original Manuscript: May 15, 2000
Revised Manuscript: February 27, 2001
Published: May 20, 2001

Citation
Jihong Geng, Jonathan I. Lunine, and George H. Atkinson, "Absolute intensities and pressure-broadening coefficients of 2-µm CO2 absorption features: intracavity laser spectroscopy," Appl. Opt. 40, 2551-2560 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-15-2551


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature (London) 250, 128–130 (1974). [CrossRef]
  2. J. Y. Mandin, “Interpretation of CO2 absorption bands observed in the Venus infrared spectrum between 1 and 2.5 µm,” J. Mol. Spectrosc. 67, 304–321 (1977). [CrossRef]
  3. J. I. Lunine, “Origin and evolution of outer solar system atmospheres,” Science 245, 141–147 (1989). [CrossRef] [PubMed]
  4. T. Encrenaz, E. Lellouch, “On the atmospheric origin of weak absorption features in the infrared spectrum of Mars,” J. Geophys. Res. 95, 14589–14593 (1990). [CrossRef]
  5. C. B. Olkin, J. L. Elliot, H. B. Hammel, A. R. Cooray, S. W. McDonald, J. A. Foust, A. S. Bosh, M. W. Buie, R. L. Millis, L. H. Wasserman, E. W. Dunham, L. A. Young, R. R. Howell, W. B. Hubbard, R. Hill, R. L. Marcialis, J. S. McDonald, D. M. Rank, J. C. Holbrook, H. J. Reitsema, “The thermal structure of Triton’s atmosphere: results from the 1993 and 1995 occultations,” Icarus 129, 178–201 (1997). [CrossRef]
  6. D. F. Strobel, X. Zhu, M. E. Summers, M. H. Stevens, “On the vertical thermal structure of Pluto’s atmosphere,” Icarus 120, 266–289 (1996). [CrossRef]
  7. C. A. Griffith, T. Owen, G. A. Miller, T. Geballe, “Transient clouds in Titan’s lower atmosphere,” Nature (London) 395, 575–578 (1998). [CrossRef]
  8. J. B. Pollack, O. B. Toon, R. Boese, “Greenhouse models of Venus’ high surface temperature, as constrained by Pioneer Venus measurements,” J. Geophys. Res. 85, 8223–8231 (1980). [CrossRef]
  9. F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201Π ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1980). [CrossRef]
  10. C. B. Suarez, F. P. J. Valero, “Line intensities of CO2 at different temperatures,” J. Mol. Spectrosc. 140, 407–411 (1990). [CrossRef]
  11. L. D. Tubbs, D. Williams, “Broadening of infrared absorption lines at reduced temperatures: carbon dioxide,” J. Opt. Soc. Am. 62, 284–289 (1972). [CrossRef]
  12. P. Cvijin, K. Wells, I. Mendez, J. Delaney, J. Lunine, D. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993). [CrossRef]
  13. B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994). [CrossRef]
  14. B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Line intensities in the 647.5 nm ammonia band at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 53, 519–526 (1995).
  15. K. Singh, J. J. O’Brien, “Intensity measurements of methane lines in the 727 nm band studied by intracavity laser spectroscopy at temperatures down to 77 K,” Chem. Phys. Lett. 229, 29–34 (1994). [CrossRef]
  16. K. Singh, J. J. O’Brien, “Laboratory measurement of absorption coefficients for the 727 nm band of methane at 77 K and comparison with results derived from spectra of the giant planets,” J. Quant. Spectrosc. Radiat. Transfer 54, 607–619 (1995). [CrossRef]
  17. V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999). [CrossRef]
  18. F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985). [CrossRef] [PubMed]
  19. N. Goldstein, T. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser technique,” Chem. Phys. Lett. 116, 223–230 (1985). [CrossRef]
  20. M. A. Melieres, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337–345 (1985). [CrossRef]
  21. D. C. Miller, J. J. O’Brien, G. H. Atkinson, “In situ detection of BH2 and atomic boron by intracavity laser spectroscopy in the plasma dissociation of gaseous B2H6,” J. Appl. Phys. 65, 2645–2651 (1989). [CrossRef]
  22. S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995). [CrossRef]
  23. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990). [CrossRef]
  24. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55 µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993). [CrossRef]
  25. M. P. Frolov, Yu P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1998).
  26. E. Mehzidehdah, J. Lunine, G. H. Atkinson, “Intracavity laser spectroscopy with an ion-doped, solid-state Tm+3:YAG laser,” J. Quant. Spectrosc. Radiat. Transfer 68, 453–465 (2001). [CrossRef]
  27. F. Stoeckel, M. D. Schuh, N. Goldstein, G. H. Atkinson, “Time-resolved intracavity laser spectroscopy: 266 nm photodissociation of acetaldehyde vapor to form HCO,” Chem. Phys. 95, 135–144 (1985). [CrossRef]
  28. P. V. Cvijin, K. Wells, D. Gilmore, J. Wu, D. M. Hunten, G. H. Atkinson, “Fringe pattern suppression in intracavity laser spectroscopy,” Appl. Opt. 31, 5779–5784 (1992). [CrossRef] [PubMed]
  29. C. P. Courtoy, “Spectres de vibration-rotation. XII,” Can. J. Phys. 35, 608–648 (1957).
  30. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The 1996 HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation),” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  31. D. H. Rank, U. Fink, T. A. Wiggins, “Measurements on spectra of gases of planetary interest. II. H2, CO2, NH3, and CH4,” Astrophys. J. 143, 980–988 (1966). [CrossRef]
  32. H. D. Downing, R. H. Hunt, “Line intensities of CO2 in the 2.0 micron region,” J. Quant. Spectrosc. Radiat. Transfer 13, 311–321 (1973). [CrossRef]
  33. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Norstrand, Princeton, N.J., 1950), pp. 124–125.
  34. U. Fink, T. A. Wiggins, D. H. Rank, “Frequency and intensity measurements on the quadrupole spectrum of molecular hydrogen,” J. Mol. Spectrosc. 18, 384–395 (1965). [CrossRef]
  35. P. Varansi, S. Sarangi, L. Pugh, “Measurements on the infrared lines of planetary gases at low temperatures. I. ν3-fundamental of methane,” Astrophys. J. 179, 977–982 (1973). [CrossRef]
  36. H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, eds., Mars (University of Arizona, Tucson, Ariz., 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited