OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3572–3574

Possibility of hard-target lidar detection of a biogenic volatile organic compound, α-pinene gas, over forest areas

Yasunori Saito, Petter Weibring, Hans Edner, and Sune Svanberg  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3572-3574 (2001)
http://dx.doi.org/10.1364/AO.40.003572


View Full Text Article

Enhanced HTML    Acrobat PDF (72 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption spectrum of α-pinene gas, a biogenic volatile organic compound, was directly measured with a pulsed mid-infrared laser. The maximum absorption wavelength was found to be ∼3.42 µm, and an absorption cross section of 4.8 × 10-23 m2 molec-1 was obtained. A simple theoretical calculation with the measured spectral data showed that several hundreds of parts in 1012 (ppt) of α-pinene gas in forest–mountain areas over a range of ∼10 km were detectable by a long-path-averaged hard-target absorption lidar. Requirements for system development were also discussed.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: August 9, 2000
Revised Manuscript: January 22, 2001
Published: July 20, 2001

Citation
Yasunori Saito, Petter Weibring, Hans Edner, and Sune Svanberg, "Possibility of hard-target lidar detection of a biogenic volatile organic compound, α-pinene gas, over forest areas," Appl. Opt. 40, 3572-3574 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Helmig, L. F. Klinger, A. Guenther, L. Vierling, C. Geron, P. Zimmerman, “Biogenic volatile organic compound emission (BVOCs). I. Identification from three continental sites in the U.S.,” Chemosphere 38, 2163–2187 (1999). [CrossRef] [PubMed]
  2. F. Fehsenfeld, J. Calvert, R. Fall, P. Goldan, A. B. Guenther, C. N. Hewitt, B. Lamb, L. Shaw, M. Trainer, H. Wesyberg, P. Zimmerman, “Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry,” Global Biogeochem. Cycles 6, 389–430 (1992). [CrossRef]
  3. T. Laurila, R. Steinbrecher, J. Kesselmeier, R. Janson, S. Kellomaki, “Biogenic VOC emissions and photochemistry in the boreal regions of Europe,” presented at the Seventh European Symposium on Physica-Chemical Behaviour of Atmospheric Pollutants, 2–4 October 1996, Venice, Italy.
  4. J. Rinne, H. Hakola, T. Laurila, U. Rannik, “Canopy scale monoterpene emissions of Pinus sylvestris dominated forests,” Atmos. Environ. 34, 1099–1107 (2000). [CrossRef]
  5. M. Douard, R. Bacis, P. Rambaldi, A. Ross, J. P. Wolf, “Fourier-transfer lidar,” Opt. Lett. 20, 2140–2142 (1995). [CrossRef] [PubMed]
  6. R. A. Baumgartner, R. L. Byer, “Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4,” Appl. Opt. 17, 3555–3561 (1978). [CrossRef] [PubMed]
  7. M. J. T. Milton, T. D. Gardiner, F. Molero, J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997). [CrossRef]
  8. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351–31359 (1999). [CrossRef]
  9. H. Hakola, T. Laurila, J. Rinne, K. Puhto, “The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site,” Atmos. Environ. 34, 4971–4982 (2000). [CrossRef]
  10. J. Rinne, H. Hakola, T. Laurila, “Vertical fluxes of monoterpenes above a Scots pine stand in the boreal vegetation zone,” Phys. Chem. Earth B 24, 711–715 (1999). [CrossRef]
  11. P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Differential absorption lidar system based on a frequency agile optical parameter oscillator for multi-component chemical analysis of gas mixtures,” presented at the 20th International Laser Radar Conference, 10–14 July 2000, Vichy, France.
  12. D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981). [CrossRef]
  13. E. J. McCartney, Absorption and Emission by Atmospheric Gases (Wiley, New York, 1983), p. 286.
  14. M. H. Lee, J. F. Holmes, “Effect of the turbulent atmosphere on the autocovariance function for a speckle field generated by a laser beam with random pointing error,” J. Opt. Soc. Am. 71, 559–565 (1981). [CrossRef]
  15. N. Sugimoto, N. Koga, I. Matsui, Y. Sasano, A. Minato, K. Ozawa, Y. Saito, A. Nomura, T. Aoki, T. Itabe, H. Munimori, I. Murata, H. Fukunishi, “Earth–satellite–Earth laser long-path absorption experiment using the Retroreflector in Space (RIS) on the Advanced Earth Observing Satellite (ADEOS),” J. Opt. A 1, 201–209 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited