OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3575–3585

Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties

Kevin George Ruddick, Herman J. Gons, Machteld Rijkeboer, and Gavin Tilstone  »View Author Affiliations

Applied Optics, Vol. 40, Issue 21, pp. 3575-3585 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-band algorithms that use the ratio of reflectances at 672 and 704 nm have already proved successful for chlorophyll a retrieval in a range of coastal and inland waters. An analysis of the effect of reflectance measurement errors on such algorithms is made. It provides important indications of the range of validity of these algorithms and motivates the development of an entirely new type of adaptive two-band algorithm for hyperspectral data, whereby the higher wavelength is chosen for each input spectrum individually. When one selects the wavelength at which reflectance is equal to the reflectance at the red chlorophyll a absorption peak, chlorophyll a retrieval becomes entirely insensitive to spectrally flat reflectance errors, which are typical of imperfect atmospheric correction, and is totally uncoupled from the retrieval or an estimation of backscatter. This new algorithm has been tested for Dutch inland and Belgian coastal waters.

© 2001 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: August 17, 2000
Revised Manuscript: February 20, 2001
Published: July 20, 2001

Kevin George Ruddick, Herman J. Gons, Machteld Rijkeboer, and Gavin Tilstone, "Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties," Appl. Opt. 40, 3575-3585 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  2. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  3. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  4. C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.
  5. K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.
  6. M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998). [CrossRef] [PubMed]
  7. J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984). [CrossRef]
  8. R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994). [CrossRef]
  9. H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).
  10. A. P. Vasilkov, “A retrieval of coastal water constituent concentrations by least-square inversion of a radiance model,” in Fourth International Conference on Remote Sensing for Marine and Coastal Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 2, pp. 107–116.
  11. S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985). [CrossRef]
  12. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989). [CrossRef]
  13. A. G. Dekker, “Detection of water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. dissertation (Vrije Universiteit, Amsterdam, The Netherlands, 1993).
  14. H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1133 (1999). [CrossRef]
  15. K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992). [CrossRef]
  16. H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998). [CrossRef]
  17. D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999). [CrossRef]
  18. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  19. R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).
  20. G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999). [CrossRef]
  21. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000). [CrossRef]
  22. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000). [CrossRef]
  23. C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000). [CrossRef]
  24. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  25. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995). [CrossRef]
  26. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  27. E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt. 26, 2095–2101 (1987). [CrossRef] [PubMed]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  29. R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999). [CrossRef]
  30. J. Krijgsman, “Optical remote sensing of water quality parameters,” Ph.D. dissertation (Technische Universiteit Delft, The Netherlands, 1994).
  31. R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.
  32. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993). [CrossRef]
  33. H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992). [CrossRef]
  34. H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994). [CrossRef]
  35. MERIS Scientific Advisory Group, “MERIS: the medium resolution imaging spectrometer,” (European Space Agency Publications, Noordwijk, The Netherlands, 1995).
  36. Nederlandse norm 6520, “Water: spectrofotometrische bepaling van het gehalte aan chlorofyl-a,” (Nederlands Normalisatie-instituut, Postbus 5059, 2600 GB Delft, The Netherlands, 1981).
  37. C. J. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12, 343–347 (1967). [CrossRef]
  38. H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000). [CrossRef]
  39. H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).
  40. I. Y. Kamov, “Adaptive algorithms for estimating the chlorophyll a content of phytoplankton from remote sensing of mesotrophic and eutrophic water objects,” Sov. J. Remote Sens. 10, (11)68–77 (1992).
  41. K. F. Palmer, D. J. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited