Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bloch analysis of photonic lattices that incorporate vertical cavity surface-emitting laser arrays

Not Accessible

Your library or personal account may give you access

Abstract

We analyzed one-dimensional photonic lattices that incorporate mirror-modulated vertical cavity surface-emitting laser arrays utilizing the Bloch formalism. First, infinitely long arrays are considered. The in-phase mode (with a main central lobe at the far field) and antiphase mode (with two main symmetrically-located lobes at the far-field) are examined. A comparison of the modal losses of the in-phase and the antiphase modes, resulted in the discovery of regimes in which the in-phase mode is dominant. Considering lattices of finite length, we compared the results of the Bloch model to the exact solutions. It is shown that the boundary conditions in these lattices select a specific mode from the continuous spectrum in the infinite case. Consequently, the lattice’s length affects the eigenmodes and the corresponding eigenvalues in a periodic manner.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization Bloch waves in photonic crystals based on vertical cavity surface emitting laser arrays

Dmitri L. Boiko, Gilles Guerrero, and Eli Kapon
Opt. Express 12(12) 2597-2602 (2004)

Effect of spatial hole burning on injection-locked vertical-cavity surface-emitting laser arrays

Tal Fishman and Amos Hardy
Appl. Opt. 39(18) 3108-3114 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.