OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4449–4462

Temperature-dependent optical constants of water ice in the near infrared: new results and critical review of the available measurements

Bhavani Rajaram, David L. Glandorf, Daniel B. Curtis, Margaret A. Tolbert, Owen B. Toon, and Nathan Ockman  »View Author Affiliations


Applied Optics, Vol. 40, Issue 25, pp. 4449-4462 (2001)
http://dx.doi.org/10.1364/AO.40.004449


View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical constants of water ice have been determined in the near infrared from 4000 to 7000 cm-1. Polycrystalline ice films with thickness as great as ∼1164 µm were formed by condensation of water vapor on a cold silicon substrate at temperatures of 166, 176, 186, and 196 K. The transmission of light through the ice films was measured during their growth from 0 to 1164 µm over the frequency range of approximately 500–7000 cm-1. The optical constants were extracted by means of simultaneously fitting the calculated transmission spectra of films of varying thickness to their respective measured transmission spectra with an iterative Kramers–Kronig technique. Equations are presented to account for reflection losses at the interfaces when the sample is held in a cell. These equations are used to reanalyze the transmission spectrum of water ice (358-µm sample at 247 K) recorded by Ockman in 1957 [Philos. Mag. Suppl. 7, 199 (1958)]. Our imaginary indices for water ice are compared with those of Gosse et al. [Appl. Opt. 34, 6582 (1995)], Kou et al. [Appl. Opt. 32, 3531 (1993)], Grundy and Schmitt [J. Geophys. Res. 103, 25809 (1998)], and Warren [Appl. Opt. 23, 1206 (1984)], and with the new indices from Ockman’s spectrum. The temperature dependence in the imaginary index of refraction observed by us between 166 and 196 K and that between our data at 196 K and the data of Gosse et al. at 250 K are compared with that predicted by the model of Grundy and Schmitt. On the basis of this comparison a linear interpolation of the imaginary indices of refraction between 196 and 250 K is proposed. We believe that the accuracy of this interpolation is better than 20%.

© 2001 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(290.3030) Scattering : Index measurements

History
Original Manuscript: October 27, 2000
Revised Manuscript: April 26, 2001
Published: September 1, 2001

Citation
Bhavani Rajaram, David L. Glandorf, Daniel B. Curtis, Margaret A. Tolbert, Owen B. Toon, and Nathan Ockman, "Temperature-dependent optical constants of water ice in the near infrared: new results and critical review of the available measurements," Appl. Opt. 40, 4449-4462 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-25-4449

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited