OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4885–4893

Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution

Emmanuel Boss, Michael S. Twardowski, and Sean Herring  »View Author Affiliations

Applied Optics, Vol. 40, Issue 27, pp. 4885-4893 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ∝ D, past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope γ is related to the PSD slope ξ by ξ = γ + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by ξ = γ + 3 - 0.5 exp(-6γ). In most oceanic observations ξ > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c p (λ), is well described by a hyperbolic relation to the wavelength c p ∝ λ throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.

© 2001 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Original Manuscript: February 20, 2001
Revised Manuscript: May 21, 2001
Published: September 20, 2001

Emmanuel Boss, Michael S. Twardowski, and Sean Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Kitchen, J. R. V. Zaneveld, H. Pak, “Effect of particle size distribution and chlorophyll content on beam attenuation spectra,” Appl. Opt. 21, 3913–3918 (1982). [CrossRef] [PubMed]
  2. C. M. Boyd, G. W. Johnson, “Precision of size determination of resistive electronic particle counters,” J. Plankton Res. 17, 41–58 (1995). [CrossRef]
  3. W. D. Gardner, “Incomplete extraction of rapidly settling particles from water samples,” Limnol. Oceanogr. 22, 764–768 (1977). [CrossRef]
  4. I. N. McCave, “Particulate size spectra, behavior, and origin of nephloid layers over the Nova Scotian continental rise,” J. Geophys. Res. 88, 7647–7666 (1983). [CrossRef]
  5. C. Moore, E. J. Bruce, W. S. Pegau, A. D. Weidemann, “WET Labs ac-9: field calibration protocol, deployment techniques, data processing and design improvements,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 725–730 (1997).
  6. G. V. Middleton, J. B. Southard, “Mechanics of sediment movement,” SEPM Short Course 3 (Society for Sedimentary Geology, Tulsa, Okla., 1984).
  7. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  8. K. S. Shifrin, G. Tonna, “Inverse problem related to light scattering in the atmosphere and ocean,” in Advances in Geophysics, R. Dmowska, B. Saltzman, eds. (Academic, San Diego, Calif., 1993), Vol. 34. [CrossRef]
  9. F. Volz, “Die Optik und Meterologie der atmospharischen Trubung,” Ber. Dtsch. Wetterdienstes 2, 3–47 (1954).
  10. A. Morel, “Diffusion de la lumiere par les eaux de mer. Resultat experimentaux et approch theorique,” in Agard Lecture Series 61 on Optics of the Sea (Advisory Group for Aerospace Research and Development; NATO, London, 1973), pp. 3.1.1–76.
  11. P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanologica Acta 3, 89–96 (1980).
  12. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, T. D. Dickey, “The spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001). [CrossRef]
  13. K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992). [CrossRef]
  14. A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24955–24968 (1998). [CrossRef]
  15. G. A. Jackson, R. E. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, H. G. Dam, “Particle size spectra between 1µm and 1cm at Monterey Bay determined using multiple instruments,” Deep-Sea Res. 44, 1739–1768 (1997). [CrossRef]
  16. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970). [CrossRef]
  17. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]
  18. K. J. Voss, R. W. Austin, “Beam-attenuation measurement error due to small-angle scattering,” J. Atmos. Ocean. Technol. 10, 113–121 (1992). [CrossRef]
  19. M. Jonasz, “Particle size distributions in the Baltic,” Tellus Ser. B 35, 346–358 (1983). [CrossRef]
  20. D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. 40, 1459–1473 (1993). [CrossRef]
  21. I. N. McCave, “Size spectra and aggregation of suspended particles in the deep ocean,” Deep-Sea Res. 31, 329–352 (1984). [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  23. D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997). [CrossRef]
  24. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. W. H. Press, S. A. Teukolsky, W. T. Vattering, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).
  26. G. R. Fournier, T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30, 2042–2048 (1991). [CrossRef] [PubMed]
  27. B. T. N. Evans, G. R. Fournier, “Analytic approximation to randomly oriented spheroid extinction,” Appl. Opt. 33, 5796–5804 (1994). [CrossRef] [PubMed]
  28. P. C. Waterman, “Matrix methods in potential theory and electromagnetic scattering,” J Appl. Phys. 50, 4550–4566 (1979). [CrossRef]
  29. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000).
  30. H. Barth, K. Grisard, K. Holtsch, R. Reuter, U. Stute, “Polychromatic transmissometer for in situ measurements of suspended particles and gelbstoff in water,” Appl. Opt. 36, 7919–7928 (1997). [CrossRef]
  31. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996). [CrossRef]
  32. D. Stramski, A. Morel, A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27, 3954–3956 (1988). [CrossRef] [PubMed]
  33. M. Jonasz, “Nonsphericity of suspended marine particles and its influence on light scattering,” Limnol. Ocenaogr. 32, 1059–1065 (1987). [CrossRef]
  34. E. Aas, “Influence of shape and structure on light scattering by marine particles,” (University of Oslo, Oslo, 1984).
  35. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters,” New Phytol. 77, 341–358 (1976). [CrossRef]
  36. P. Hill, Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia B3H 4J1, Canada (personal communication, 2000).
  37. J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974). [CrossRef]
  38. R. Iturriaga, D. A. Siegel, “Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989). [CrossRef]
  39. Y. C. Agrawal, H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 99–114 (2000). [CrossRef]
  40. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for retrieving oceanic particle composition and size distribution from measurements of the backscattering ratio and spectral attenuation,” J. Geophys. Res. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited