OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5791–5801

Deconvolution-Based Spatial Resolution in Optical Diffusion Tomography

Charles L. Matson  »View Author Affiliations


Applied Optics, Vol. 40, Issue 31, pp. 5791-5801 (2001)
http://dx.doi.org/10.1364/AO.40.005791


View Full Text Article

Acrobat PDF (907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The role that deconvolution plays in the achievable spatial resolution in optical diffusion tomography is examined for the case of imaging an inhomogeneity in an otherwise homogeneous medium. It is shown that, in the measured data, it is the shape of the turbid medium modulation transfer function that determines the maximum spatial resolution. When the turbid medium transfer function is deconvolved from the measured data, it is the signal-to-noise ratio properties of the Fourier-transformed measured data that determine the maximum spatial resolution. It is shown that deconvolution-based methods can improve the spatial resolution in measured data up to a factor of 5 for realistic noise levels. These results are demonstrated with computer-simulated data.

© 2001 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2980) Image processing : Image enhancement
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media

Citation
Charles L. Matson, "Deconvolution-Based Spatial Resolution in Optical Diffusion Tomography," Appl. Opt. 40, 5791-5801 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5791


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
  2. J. A. Moon and J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
  3. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
  4. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
  5. V. Chernomordik, R. Nossal, and A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
  6. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
  7. J. C. Hebden, D. J. Hall, and D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
  8. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
  9. H. Wabnitz and H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
  10. J. Ripoll, M. Nieto-Vesperinas, and R. Carminati, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999).
  11. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
  12. C. L. Matson and H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
  13. G. Barton, Elements of Green’s Functions and Propagation (Oxford University, Oxford, UK, 1989).
  14. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  15. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
  16. C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue using diffuse photon density waves,” Appl. Opt. 36, 214–220 (1997).
  17. C. L. Matson and H. Liu, “Backpropagation in turbid media,” J. Opt. Soc. Am. A 16, 1254–1265 (1999).
  18. X. D. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61, 4295–4309 (2000).
  19. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves optical diffusion tomography,” Appl. Opt. 38, 2950–2961 (1999).
  20. C. L. Matson, “Resolution, linear filtering, and positivity,” J. Opt. Soc. Am. A 15, 33–41 (1998).
  21. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996), Sect. 2.3.
  22. C. L. Matson and H. Liu, “Resolved object imaging and localization with the use of a backpropagation algorithm,” Opt. Express 6, 168–174 (2000), http://www.opticsexpress.org.
  23. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
  24. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
  25. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
  26. C. L. Matson is preparing a manuscript to be called “Signal-to-noise ratio expressions in optical diffusion tomography.”
  27. M. Schweiger and S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97), Lecture Notes in Computer Science (Springer, Berlin, 1997), Vol. 1230, pp. 71–84.
  28. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
  29. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited