OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 4 — Feb. 1, 2001
  • pp: 461–471

Universal method for holographic grating recording: multimode deformable mirrors generating Clebsch–Zernike polynomials

Gérard R. Lemaı̂tre and Michel Duban  »View Author Affiliations


Applied Optics, Vol. 40, Issue 4, pp. 461-471 (2001)
http://dx.doi.org/10.1364/AO.40.000461


View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recording methods for making aberration-corrected holographic gratings are greatly simplified by use of a plane multimode deformable mirror (MDM) upon one of the two recording beams. It is shown that MDM compensators easily provide the superposition of many interesting active optics modes, which we have named Clebsch–Zernike modes. When we apply only a uniform loading or no loading at all onto the rear side of the MDM clear aperture, the available Clebsch–Zernike modes are made to belong to a subclass of the Zernike modes that includes the three modes of the third-order aberration theory as well as a well-defined part of the Zernike higher-order modes. Such a recording method is considered to be universal, since it does not require the use of a sophisticated optical system such as a compensator. Active optics 12-arm MDM’s in the vase form have been designed from the elasticity theory. The design of six-arm MDM’s is currently carried out with theoretical results. As an example of the method, the recording of three holographic gratings of the Hubble Space Telescope Cosmic Origins Spectrograph has been investigated. Substantial improvements in image quality have been found by use of a six-arm MDM as recording compensator. The result is that aberrations of much higher order can simultaneously be corrected so that the residual blur images of the spectra occupy areas approximately 10 (direction of dispersion) × 3 (cross dispersion) = 30 times smaller—also in terms of pixel number—than those obtained by our American colleagues. Therefore the active optics recording method appears to provide substantial gains in resolving power and in sensitivity: (i) For all three gratings the spectral resolution would be increased by a factor of 10, and (ii), in addition, for the two higher dispersion gratings, the limiting magnitude on the sky appears to be increased by a magnitude of approximately 1–1.2.

© 2001 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.1000) Holography : Aberration compensation
(220.1250) Optical design and fabrication : Aspherics
(350.1260) Other areas of optics : Astronomical optics

History
Original Manuscript: June 5, 2000
Revised Manuscript: October 2, 2000
Published: February 1, 2001

Citation
Gérard R. Lemaı̂tre and Michel Duban, "Universal method for holographic grating recording: multimode deformable mirrors generating Clebsch–Zernike polynomials," Appl. Opt. 40, 461-471 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-4-461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Duban, “Holographic aspheric gratings printed with aberration waves,” Appl. Opt. 26, 4263–4273 (1987). [CrossRef] [PubMed]
  2. M. Duban, “Third-generation Rowland holographic mounting,” Appl. Opt. 30, 4019–4025 (1991). [CrossRef] [PubMed]
  3. M. Duban, “Third-generation holographic Rowland mounting: fourth-order theory,” Appl. Opt. 38, 3443–3449 (1999). [CrossRef]
  4. M. Duban, G. R. Lemaître, R. Malina, “Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors,” Appl. Opt. 37, 3438–3439 (1998). [CrossRef]
  5. M. Duban, K. Dohlen, G. R. Lemaître, “Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origins Spectrograph gratings of the Hubble Space Telescope,” Appl. Opt. 37, 7214–7217 (1998). [CrossRef]
  6. M. Duban, “Theory and computation of three Cosmic Origins Spectrograph aspheric gratings recorded with a multimode deformable mirror,” Appl. Opt. 38, 1096–1102 (1999). [CrossRef]
  7. G. R. Lemaître, M. Wang, “Active mirrors warped using Zernike polynomials for correcting off-axis aberrations of fixed primary mirrors. I. Theory and elasticity design,” Astron. Astrophys. Suppl. Ser. 114, 373–378 (1995).
  8. J. C. Green, “The cosmic origins spectrograph: a Hubble replacement instrument for the 2002 reservicing mission,” in Space Telescopes and Instruments V, P. J. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 265–270 (1998). [CrossRef]
  9. J. C. Green, “The cosmic origins spectrograph,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 352–359 (2000). [CrossRef]
  10. J. A. Morse, J. C. Green, D. C. Ebbets, J. P. Andrews, S. R. Heap, C. Leitherer, J. L. Linsky, B. D. Savage, J. M. Shull, T. P. Snow, S. A. Stern, J. T. Stocke, E. Wilkinson, “Performance overview and science goals of the Cosmic Origins Spectrograph for the Hubble Space Telescope, in Space Telescopes and Instruments V, P. J. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 361–368 (1998). [CrossRef]
  11. M. Duban, “Theory of spherical holographic gratings recorded by use of a multimode deformable mirror,” Appl. Opt. 37, 7209–7213 (1998). [CrossRef]
  12. G. R. Lemaître, M. Duban, “A general method of holographic grating recording with a null-powered multimode deformable mirror,” Astron. Astrophys. 339, L89–L93 (1998).
  13. S. Osterman, E. Wilkinson, J. C. Green, K. Redman, “FUV grating performance for the Cosmic origins spectrograph, in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 360–366 (2000). [CrossRef]
  14. G. R. Lemaître, “Various aspects of active optics,” in Active Telescope Systems, F. J. Roddier, eds., Proc. SPIE1114, 328–341 (1989). [CrossRef]
  15. G. R. Lemaître, M. Wang, “Témos 4: optical results with a segmented spherical primary and an actively aspherized secondary, in Metal Mirrors, R. G. Bingham, D. D. Walker, eds., Proc. SPIE1931, 43–52 (1992).
  16. A. Couder, “Sur les miroirs de télescopes,” Bull. Astronom.2nd ed., Tome VII, Fasc. VI, 219 et seq. (1931).
  17. G. Moretto, G. R. Lemaître, T. Bactivelane, M. Wang, M. Ferrari, S. Mazzanti, E. F. Borra, “Active mirrors warped using Zernike polynomials for correcting off-axis aberrations of fixed primary mirrors. II. Optical testing and performance evaluation,” Astron. Astrophys. Suppl. Ser. 114, 379–386 (1995).
  18. A. R. F. Clebsch, in Theorie der Elasticität fester Körper (Teubner, Leipzig, 1862) [French translation, Théorie de l’Élasticité des Corps Solides, with annotations and complements by Saint-Venant and Flamant (Dunod, Paris, 1881)].
  19. B. Schmidt, “A coma-free telescope,” Mitt. Hamburg Strenv. 7, 15 (1932).
  20. E. Schmidt, in Optical Illusions: The Life Story of Bernhard Schmidt the Great Stellar Optician of the Twentieth Century (Estonian Academy Publishers, Tallinn, Estonia, 1995) (ISBN 9985-50-102-0).
  21. J. Kross, in L’Oeil du Grand Tout (Laffont, Paris, 1997). French translation of the Estonian book Vastutuulelaev, Kirjastus Eesti Raamat, Estonia, 1987. This book is about the life of Bernhard Schmidt, 1879–1935.
  22. R. N. Wilson, in Reflecting Telescope Optics II (Springer, Berlin, 1999), Chap. 3.
  23. R. N. Wilson, F. Franza, L. Noethe, “The ESO 3.5 meter Ntt-Active optics I: a system for optimizing the optical quality and reducing the cost of large telescopes,” J. Mod. Opt. 34, 485–511 (1987). [CrossRef]
  24. G. R. Lemaître, “In situ active reshaping of the CFHT Cassegrain mirror,” available from the author.
  25. G. R. Lemaître, “Asphérisation par relaxation élastique—Miroirs de forme en vase,” Comptes Rendus Acad. Sci. Ser. B 290, 171–174 (1980).
  26. G. R. Lemaître, “Active optics and elastic relaxation methods,” in Current Trends in Optics, International Commission for Optics 12 (Taylor & Francis, London, 1981), pp. 135–149.
  27. W. Min, “Instrumentation astrophysique et optique active: evaluation de Témos 4,” Ph.D. dissertation, (Observatoire de Marseille, Université de Provence Aix-Marseille I, Aix-en-Provence, 1992).
  28. J. Lubliner, J. E. Nelson, “Keck Telescope: stressed mirror polishing,” Appl. Opt. 19, 2332–2340 (1980). [CrossRef] [PubMed]
  29. D. Su, X. Cui, Y. Wang, Z. Yao, “Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology, in Advanced Technology Optical/IR Telescopes, L. M. Stepp, ed., Proc. SPIE3352, 76–90 (1998). [CrossRef]
  30. S. Wang, D. Su, Y. Chu, X. Cui, Y. Wang, “Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation,” Appl. Opt. 35, 5155–5161 (1996). [CrossRef] [PubMed]
  31. X. Cui, D. Yang, “Support structure of LAMOST Schmidt plate MA,” in Advanced Technology Optical/IR Telescopes, L. M. Stepp, ed. Proc. SPIE3352, 378–385 (1998). [CrossRef]
  32. G. R. Lemaître, “Elasticité et miroirs à courbure variable,” Comptes Rendus Acad. Sci. Series B 282, 87–89 (1976).
  33. M. Ferrari, G. R. Lemaître, “Analysis of large deflection variable curvature mirrors,” Astron. Astrophys. 274, 12–18 (1993).
  34. M. Ferrari, “Optique active et grandes déformations élastiques,” Ph.D. dissertation (Observatoire de Marseille, Université de Provence Aix-Marseille I, Aix-en-Provence, 1994).
  35. A. Saint-Venant (Barré de), in Résumé des Leçons de Navier sur l’Application à la Mécanique, 3rd. ed. (Dunod, Paris, 1864), p. 40.
  36. P. Germain, P. Muller, in Introduction à la Mécanique des Milieux Continus (Masson, Paris, 1994), pp. 140–141.
  37. S. P. Timoshenko, S. Woinowsky-Krieger, in Theory of Plates and Shells (McGraw-Hill, New York, 1959), p. 248.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited