OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 5 — Feb. 10, 2001
  • pp: 691–706

Magneto-Optical Disk Drive Technology Using Multiple Fiber-Coupled Flying Optical Heads. Part I. System Design and Performance

Jeffrey P. Wilde, John F. Heanue, Alexander A. Tselikov, and Jerry E. Hurst, Jr.  »View Author Affiliations

Applied Optics, Vol. 40, Issue 5, pp. 691-706 (2001)

View Full Text Article

Acrobat PDF (2252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel flying-optical-head data storage technology is described. It is based on a micro-optical recording head that contains a silicon micromachined torsional mirror for high-bandwidth track following. Multiple heads and disks are contained in a Winchester-style rotating disk drive. Single-mode optical fibers provide light delivery to and from the heads. Both polarization-maintaining and low-birefringence fiber systems have been implemented for magneto-optical (MO) recording. A fixed optics module containing a laser diode, MO detection optics, and a 1 × <i>N</i> fiber bundle switch has been developed as an integral part of this new recording architecture. A 5.25-in. (13.33-cm), half-height prototype drive design and its performance are presented.

© 2001 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(210.3810) Optical data storage : Magneto-optic systems
(210.4680) Optical data storage : Optical memories
(210.4770) Optical data storage : Optical recording
(230.5440) Optical devices : Polarization-selective devices

Jeffrey P. Wilde, John F. Heanue, Alexander A. Tselikov, and Jerry E. Hurst, Jr., "Magneto-Optical Disk Drive Technology Using Multiple Fiber-Coupled Flying Optical Heads. Part I. System Design and Performance," Appl. Opt. 40, 691-706 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Suhara and H. Nishihara, “Integrated-optic disc pickup devices using waveguide holographic components,” in Holographic Optics II: Principles and Applications, G. Morris, ed., Proc. SPIE 1136, 92–99 (1989).
  2. H. Ukita, Y. Katagiri, and S. Fujimori, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
  3. S. Renard and S. Valette, “Magneto optical reading and writing integrated heads: a way to a multigigabyte multi-rigid-disk drive,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, and N. Imamura, eds., Proc. SPIE 1499, 238–247 (1991).
  4. J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, and S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.
  5. J. P. Wilde, J. E. Hurst, and J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent 5,850,375 (15 December 1998).
  6. J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, and J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent 5,940,549 (17 August 1999).
  7. J. Davis, “Beyond the superparamagnetic limit. II: Far-field recording,” in Data Storage (PennWell, Amsterdam, The Netherlands, 1998), pp. 33–36.
  8. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge U. Press, Cambridge, UK, 1995).
  9. T. W. McDaniel and R. H. Victora, eds., Handbook of Magneto-Optical Data Recording (Noyes, Westwood, N.J., 1997).
  10. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
  11. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
  12. H. Yoshikawa, T. Ohkubo, K. Fukuzawa, L. Bouet, and M. Yamamoto, “Readout characteristics of a near-field optical probe as a data-storage readout device: submicrometer scan height and resolution,” Appl. Opt. 38, 863–867 (1999).
  13. Y. Tanaka, M. Kurebayashi, Y. Murakami, and S. Yonezawa, “Short-marks recording characteristics of laser-pumped magnetic-field-modulation recording in a narrow track pitch and on magnetically induced superresolution disks,” Appl. Opt. 37, 2699–2707 (1998).
  14. H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
  15. H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, and K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
  16. K. A. Belser, T. McDaniel, J. E. Davis, and J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent 5,889,641 (30 March 1999).
  17. F. S. Barnes, K. S. Lee, and A. W. Smith, “Use of optical fiber heads for optical disks,” Appl. Opt. 25, 4010–4012 (1986).
  18. M. N. Opsasnick, D. D. Stancil, S. T. White, and M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, and N. Imamura, eds., Proc. SPIE 1499, 276–280 (1991).
  19. Quinta/Seagate demonstrated various versions of the OAW drive technology at COMDEX 1998, Las Vegas, Nev., November 1998.
  20. G. T. Sincerbox, “Miniature optics for optical recording,” in Gradient-Index Optics and Miniature Optics, Vol. 935 of SPIE Critical Review Series, D. C. Lerner and J. D. Rees, eds. (SPIE, Bellingham, Wash., 1988), pp. 63–76.
  21. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
  22. See, for example, the 3M Specialty Single-Mode Fiber: 3M™ Single-Polarization Fibers, Product Data Application Note (3M Specialty Optical Fibers, West Haven, Conn., 1995).
  23. A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, Reading, Mass., 1990), p. 83.
  24. R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” J. Lightwave Technol. 16, 1583–1588 (1998).
  25. Z. B. Ren, Ph. Robert, and P.-A. Paratte, “Temperature dependence of bend- and twist-induced birefringence in low-birefringence fiber,” Opt. Lett. 13, 62–64 (1988).
  26. See, for example, C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.
  27. E. C. Gage, “Apparatus and method for optimizing performance in an optical storage system read/write head,” U.S. patent 5,347,297 (13 September 1994).
  28. See, for example, the product guide for Meadowlark Optics, Frederick, Colo. (www.meadowlark.com).
  29. D. A. Horsley, A. Singh, A. P. Pisano, and R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.
  30. W. C. Tang, T. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
  31. J. P. Wilde, J. E. Davis, J. E. Hurst, Jr., J. F. Heanue, K. Petersen, T. McDaniel, and J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent 6,044,056 (28 March 2000).
  32. L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Opt. Lett. 21, 155–157 (1996).
  33. T. McDaniel and Y. Wang, “Coil for use with magneto-optical head,” U.S. patent 5,903,525 (11 May 1999).
  34. J. Drake and H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” in 2000 Solid-State Sensor and Actuator Workshop, Technical Digest (Transducers Research Foundation, Inc., Cleveland, Ohio, 2000), p. 10.
  35. The microlenses were fabricated by Geltech Inc., Orlando, Fla. (www.geltech.com).
  36. See, for example, the various microlens arrays made by MEMS Optical, LLC (Huntsville, Ala.) on their website www.memsoptical.com.
  37. J. F. Heanue and M. A. Wardas, “High numerical aperture objective lens manufacturable in wafer form,” U.S. patent 6,049,430 (11 April 2000).
  38. The CircuLaser diode is manufactured by Blue Sky Research, San Jose, Calif. (www.blueskyresearch.com).
  39. Tokin America Inc., San Jose, Calif. (www.tokin.com).
  40. G. R. Gray, A. T. Ryan, G. P. Agrawal, and E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
  41. See, for example, PSD devices made by Hamamatsu Photonics (www.hamamatsu.com). The PSD used here is a custom part made for Quinta/Seagate by Hamamatsu Corp., San Jose, Calif.
  42. J. F. Heanue, J. P. Wilde, J. E. Hurst, Jr., and J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent 6,034,938 (7 March 2000).
  43. M. Mansuripur, “Analysis of astigmatic focusing and push–pull tracking error signals in magnetooptical disk systems,” Appl. Opt. 26, 3981–3986 (1987).
  44. M. Mansuripur, “Certain computational aspects for vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
  45. The vector diffraction modeling is carried out with DIFFRACT (a product of MM Research, Tucson, Ariz.) in combination with Delta (supplied by L. Li, University of Arizona, Tucson, Ariz.).
  46. T. D. Goodman and M. Mansuripur, “Optimization of groove depth for cross-talk cancellation in the scheme of land-groove recording in magneto-optic disk systems,” Appl. Opt. 35, 1107–1119 (1996).
  47. A. Fukumoto, S. Kai, S. Masuhara, and K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
  48. W. D. Huber and D. A. Schmid, “High data rate magneto-optical recording,” in Optical Data Storage 2000, D. G. Stinson and R. Katayama, eds., Proc. SPIE 4090, 252–257 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited