OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 6 — Feb. 20, 2001
  • pp: 812–820

Application of Balanced Detection to Absorption Measurements of Trace Gases with Room-Temperature, Quasi-cw Quantum-Cascade Lasers

David M. Sonnenfroh, W. Terry Rawlins, Mark G. Allen, Claire Gmachl, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, James N. Baillargeon, and Alfred Y. Cho  »View Author Affiliations


Applied Optics, Vol. 40, Issue 6, pp. 812-820 (2001)
http://dx.doi.org/10.1364/AO.40.000812


View Full Text Article

Acrobat PDF (154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Distributed-feedback quantum-cascade (QC) lasers are expected to form the heart of the next-generation mid-IR laser absorption spectrometers, especially as they are applied to measurements of trace gases in a variety of environments. The incorporation of room-temperature-operable, single-mode QC lasers should result in highly compact and rugged sensors for real-world applications. We report preliminary results on the performance of a laser absorption spectrometer that uses a QC laser operating at room temperature in a quasi-cw mode in conjunction with balanced ratiometric detection. We have demonstrated sensitivities for N2O [10 parts in 106 volume-mixing ratio for a 1-m path (ppmv-m)] and NO [520 parts in 109 volume-mixing ratio for a 1-m path (ppbv-m)] at 5.4 μm. System improvements are described that are expected to result in a 2 orders of magnitude increase in sensitivity.

© 2001 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Citation
David M. Sonnenfroh, W. Terry Rawlins, Mark G. Allen, Claire Gmachl, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, James N. Baillargeon, and Alfred Y. Cho, "Application of Balanced Detection to Absorption Measurements of Trace Gases with Room-Temperature, Quasi-cw Quantum-Cascade Lasers," Appl. Opt. 40, 812-820 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-6-812


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–555 (1994).
  2. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, “Aircraft (ER-2) Laser Infrared Absorption Spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, and HNO3,” Appl. Opt. 33, 454–472 (1994).
  3. J. Podolske and M. Loewenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993).
  4. H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, and G. I. Mackay, “A tunable diode laser system for aircraft measurement of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
  5. G. W. Sachse, G. F. Hill, L. O. Wade, and M. G. Perry, “Fast response, high precision carbon monoxide sensor using a tunable diode laser technique,” J. Geophys. Res. 92, 2071–2081 (1987).
  6. J. Roths, T. Zenker, U. Parchatka, F. G. Wienhold, and G. W. Harris, “Four-laser airborne infrared spectrometer for atmospheric trace-gas measurements,” Appl. Opt. 35, 7075–7084 (1996).
  7. F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Konigstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F. J. Lubken, and T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1988).
  8. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
  9. K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
  10. J. A. Silver and D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
  11. J. E. Collins, Jr., G. W. Sachse, L. G. Burney, and L. O. Wade, “A novel external path water vapor sensor,” in Proceedings of the Fifth Annual Meeting: NASA Atmospheric Effects of Aviation Project (U.S. Government Printing Office, Washington, D.C., 1995).
  12. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
  13. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
  14. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
  15. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
  16. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
  17. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sartori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
  18. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-IR and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
  19. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
  20. K. L. Haller and P. C. D. Hobbs, “Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Technique and Applications, B. L. Feurey, ed., Proc. SPIE 1435, 298–309 (1991).
  21. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, New York, 1934).
  22. W. T. Rawlins and F. Kaufman, “Characteristics of O(I) and N(I) resonance line broadening in low pressure helium discharge lamps,” J. Quant. Spectrosc. Radiat. Transfer 18, 561–572 (1977).
  23. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  24. D. M. Sonnenfroh and M. G. Allen, “Ultrasensitive visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996).
  25. C. Gmachl, A. M. Sergent, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Improved CW operation of quantum cascade lasers with epitaxial-side heat sinking,” IEEE Photon. Technol. Lett. 11, 1369–1371 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited