OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1404–1411

Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities

Jerome M. Auerbach, Paul J. Wegner, Scott A. Couture, David Eimerl, Robin L. Hibbard, David Milam, Mary A. Norton, Pamela K. Whitman, and Lloyd A. Hackel  »View Author Affiliations


Applied Optics, Vol. 40, Issue 9, pp. 1404-1411 (2001)
http://dx.doi.org/10.1364/AO.40.001404


View Full Text Article

Enhanced HTML    Acrobat PDF (9232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient frequency doubling and tripling are critical to the successful operation of inertial confinement fusion laser systems such as the National Ignition Facility currently being constructed at the Lawrence Livermore National Laboratory and the Omega laser at the Laboratory for Laser Energetics. High-frequency conversion efficiency is strongly dependent on attainment of the phase-matching condition. In an ideal converter crystal, one can obtain the phase-matching condition throughout by angle tuning or temperature tuning of the crystal as a whole. In real crystals, imperfections in the crystal structure prohibit the attainment of phase matching at all locations in the crystal. We have modeled frequency doubling and tripling with a quantitative measure of this departure from phase matching in real crystals. This measure is obtained from interferometry of KDP and KD*P crystals at two orthogonal light polarizations.

© 2001 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

History
Original Manuscript: July 3, 2000
Revised Manuscript: November 6, 2000
Published: March 20, 2001

Citation
Jerome M. Auerbach, Paul J. Wegner, Scott A. Couture, David Eimerl, Robin L. Hibbard, David Milam, Mary A. Norton, Pamela K. Whitman, and Lloyd A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-9-1404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum. Electron. 17, 1771–1782 (1991). [CrossRef]
  2. R. W. Short, S. Skupsky, “Frequency conversion of broadband laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990). [CrossRef]
  3. J. R. Murray, “Overview of the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE Suppl.3492, 1–10 (1998).
  4. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987). [CrossRef]
  5. F. R. Nash, G. D. Boyd, M. Sargent, P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in non-linear crystals,” J. Appl. Phys. 41, 2564–2576 (1970). [CrossRef]
  6. H. Tsuya, Y. Fujino, K. Sugibachi, “Dependence of second harmonic generation on crystal inhomogeneity,” J. Appl. Phys. 41, 2557–2563 (1970). [CrossRef]
  7. N. P. Zaitseva, J. J. DeYoreo, M. R. Dehaven, R. L. Vital, K. E. Montgomery, M. Richardson, L. J. Atherton, “Rapid growth of large scale (40–55 cm) KH2PO4,” J. Cryst. Growth 180, 255–262 (1997). [CrossRef]
  8. P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, T. L. Weiland, “Harmonic conversion of large-aperture 1.05-µm laser beams for inertial-confinement fusion research,” Appl. Opt. 31, 6414–6426 (1992). [CrossRef] [PubMed]
  9. R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, “Basic properties of KDP related to the frequency conversion of 1 µm laser radiation,” IEEE J. Quantum Electron. 17, 1782–1786 (1981). [CrossRef]
  10. D. Eimerl, “Electro-optic, linear, and non-linear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 397–439 (1987). [CrossRef]
  11. G. C. Ghosh, G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for non-linear devices,” IEEE J. Quantum Electron. 18, 143–145 (1982). [CrossRef]
  12. D. Eimerl, J. M. Auerbach, P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals. I. Narrowband pump fields,” J. Mod. Opt. 42, 1037–1067 (1995). [CrossRef]
  13. P. Pliszka, P. P. Bunjeree, “Nonlinear transverse effects in second-harmonic generation,” J. Opt. Soc. Am. B 10, 1810–1819 (1993). [CrossRef]
  14. S.-C. Sheng, A. E. Siegman, “Nonlinear-optical calculations using fast transform methods: second harmonic generation with depletion and diffraction,” Phys. Rev. A 21, 599–606 (1980). [CrossRef]
  15. M. A. Dresser, J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990). [CrossRef]
  16. J. A. Fleck, J. R. Morris, M. D. Feit, “Time dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  17. P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhardt, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Applications to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited