OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1427–1437

Analysis of light-emitting diodes by Monte Carlo photon simulation

Song Jae Lee  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1427-1437 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Monte Carlo photon simulation method, which is based on statistical tracing of photons inside the chip, has been developed for analysis of LED’s in quantitative terms. Also included in the analysis is practical modeling of textured surfaces, which are often employed for enhanced light output. The method with its unique versatility is applicable to virtually any chip geometry and measures various important parameters such as photon-output-coupling efficiency, detailed photon flight statistics, and photon-output distribution patterns. It is speculated that the method can easily be extended to development of LED lamps and packages.

© 2001 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

Original Manuscript: October 26, 1999
Revised Manuscript: August 17, 2000
Published: March 20, 2001

Song Jae Lee, "Analysis of light-emitting diodes by Monte Carlo photon simulation," Appl. Opt. 40, 1427-1437 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).
  2. G. B. Stringfellow, M. G. Craford, High Brightness Light Emitting Diodes (Academic, New York, 1997).
  3. S. J. Lee, “Design rules for high-brightness light-emitting diodes grown on GaAs substrate,” Jpn. J. Appl. Phys. 37, 509–516 (1998). [CrossRef]
  4. R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998). [CrossRef]
  5. S. J. Lee, S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 237–248 (1999).
  6. M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999). [CrossRef]
  7. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Spring-Verlag, New York, 1989). [CrossRef]
  8. I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993). [CrossRef]
  9. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994). [CrossRef]
  10. F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994). [CrossRef]
  11. K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited