OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 9 — Mar. 20, 2001
  • pp: 1438–1441

Theoretical analysis of phase-matched second-harmonic generation and optical parametric oscillation in birefringent semiconductor waveguides

John O. Dimmock, Frank L. Madarasz, Nikolaus Dietz, and Klaus J. Bachmann  »View Author Affiliations

Applied Optics, Vol. 40, Issue 9, pp. 1438-1441 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (72 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the phase-matching conditions for second-harmonic generation (SHG) and optical parametric oscillation (OPO) in birefringent nonlinear semiconductor waveguides and apply these results to the model system of ZnGeP2 on a GaP substrate. The analyses and numerical results show that phase matching can be achieved for OPO and SHG for reasonable guide thicknesses throughout much of the infrared, indicating significant potential applications for nonlinear birefringent waveguides. For the fundamental mode of a relatively thick guide the region of phase matching and the phase-matching angles are similar to those in bulk material. However, the waveguide has the added flexibility that phase-matched coupling can occur between the various modes of the guide. For example, the phase-matching region for SHG can be considerably extended by coupling the pump into the guide in the fundamental, m = 0, mode and phase matching to the m = 2 mode of the second harmonic. Significantly, the results indicate, among other things, that ZnGeP2 waveguides with harmonic output in the m = 2 mode can be used for efficient SHG from input radiation in the 9.6–10.6-µm region where bulk efficiencies in this wavelength range are too small to be useful.

© 2001 Optical Society of America

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(250.7360) Optoelectronics : Waveguide modulators
(260.1440) Physical optics : Birefringence
(310.2790) Thin films : Guided waves

Original Manuscript: March 20, 2000
Revised Manuscript: December 13, 2000
Published: March 20, 2001

John O. Dimmock, Frank L. Madarasz, Nikolaus Dietz, and Klaus J. Bachmann, "Theoretical analysis of phase-matched second-harmonic generation and optical parametric oscillation in birefringent semiconductor waveguides," Appl. Opt. 40, 1438-1441 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. N. Rashkeev, S. Limpijumnong, W. R. L. Lambrecht, “Second-harmonic generation and birefringence of some ternary pnictide semiconductors,” Phys. Rev. B 59, 2737–2748 (1999). [CrossRef]
  2. F. Petrov, F. Rotermund, F. Noack, P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999). [CrossRef]
  3. M. C. Ohmer, R. Pandey, eds., “Emergence of chalcopyrites as nonlinear optical materials,” Materials Research Bulletin, Special Issue (July1998).
  4. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971). [CrossRef]
  5. K. Kato, “Second-harmonic and sum-frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2510 (1997). [CrossRef] [PubMed]
  6. D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997). [CrossRef]
  7. G. Ghosh, “Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures,” Appl. Opt. 37, 1205–1212 (1998). [CrossRef]
  8. N. P. Barnes, K. E. Murray, M. G. Jani, G. Schunemann, T. M. Pollak, “ZnGeP2 parameter amplifier,” J. Opt. Soc. Am. B 15, 232–238 (1998). [CrossRef]
  9. G. C. Xing, K. J. Bachmann, “GaP/ZnGeP2 multiple heterostructure,” J. Cryst. Growth 147, 35–38 (1995) and references therein. [CrossRef]
  10. R. G. Huntsperger, Integrated Optics: Theory and Technology, 2nd ed. (Springer-Verlag, New York, 1984), Chap. 2.
  11. F. L. Madarasz, J. O. Dimmock, N. Dietz, K. J. Bachmann, “Sellmeir parameters for ZnGeP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (1999). (Note that the paper title in the journal reads ZnGaP2 but should be ZnGeP2.) [CrossRef]
  12. G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nolinear optical properties of AgGaS2, CuGaS2, and CuInS2 and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971). [CrossRef]
  13. A. Borghesi, G. Guizzetti, “Gallium phosphide (GaP),” in Handbook of Optical Constants, E. D. Palik, ed. (Academic, New York, 1985), p. 445. [CrossRef]
  14. P. A. Budni, K. Ezzo, P. G. Schunemann, S. Minnigh, J. C. McCarthy, T. M. Pollak, “2.8-µm pumped optical parametric oscillation in ZnGeP2,” in Advanced Solid-State Lasers, J. Dubé, L. Chase, eds., Vol. 10 of OSA, Proceedings Series, (Optical Society of America, Washington, D.C., 1991), pp. 335–338.
  15. Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, V. P. Novikov, “Mixing of frequencies of CO2 and CO lasers in ZnGeP2 crystals,” Sov. J. Quantum. Electron. 17, 748–749 (1987). [CrossRef]
  16. K. L. Vodopyanov, “Parametric generation of tunable infrared radiation in ZnGeP2 and GaSe pumped at 3 µm,” J. Opt. Soc. Am. B 10, 1723–1729 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited