OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 1962–1971

Synthesis of Longitudinal Coherence Functions by Spatial Modulation of an Extended Light Source: A New Interpretation and Experimental Verifications

Wei Wang, Hirokazu Kozaki, Joseph Rosen, and Mitsuo Takeda  »View Author Affiliations


Applied Optics, Vol. 41, Issue 10, pp. 1962-1971 (2002)
http://dx.doi.org/10.1364/AO.41.001962


View Full Text Article

Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Giving a new physical interpretation to the principle of longitudinal coherence control, we propose an improved method for synthesizing a spatial coherence function along the longitudinal axis of light propagation. By controlling the irradiance of an extended quasi-monochromatic spatially incoherent source with a spatial light modulator, we generated a special optical field that exhibits high coherence selectively for a specific pair of points at specified locations along the axis of beam propagation. This function of longitudinal coherence control provides new possibilities for dispersion-free measurements in optical tomography and profilometry. A quantitative experimental proof of principle is presented.

© 2002 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

Citation
Wei Wang, Hirokazu Kozaki, Joseph Rosen, and Mitsuo Takeda, "Synthesis of Longitudinal Coherence Functions by Spatial Modulation of an Extended Light Source: A New Interpretation and Experimental Verifications," Appl. Opt. 41, 1962-1971 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-10-1962


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  3. X. J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, and J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999).
  4. P. A. Flournoy, R. W. McClure, and G. Wyntjes, “White-light interferometric thickness gauge,” Appl. Opt. 11, 1907–1915 (1972).
  5. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, & Process Control, K. M. Monahan, ed., Proc. SPIE 775, 233–247 (1987).
  6. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
  7. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, 1st ed. (Cambridge U. Press, Cambridge, 1995), Chap. 4, p. 149.
  9. M. Takeda, “The philosophy of fringes—analogies and dualities in optical metrology,” in Fringe ’97, Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jueptner and W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 17–26.
  10. C. W. McCutchen, “Generalized source and the Van Cittert-Zernike theorem: a study of the spatial coherence required for interferometry,” J. Opt. Soc. Am. 56, 727–733 (1966).
  11. J. E. Biegen, “Determination of the phase change on reflection from two-beam interference,” Opt. Lett. 19, 1690–1692 (1994).
  12. J. Rosen and A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. A 13, 2091–2095 (1996).
  13. J. Rosen and A. Yariv, “Longitudinal partial coherence of optical radiation,” Opt. Commun. 117, 8–12 (1995).
  14. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39, 4107–4111 (2000).
  15. K. Hotate and T. Okugawa, “Optical information-processing by synthesis of the coherence function,” J. Lightwave Technol. 12, 1247–1255 (1994).
  16. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1981), Chap. 14, p. 292.
  17. J. H. Bruning, D. J. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measurement interferometer,” Appl. Opt. 13, 2693–2703 (1974).
  18. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  19. J. Rosen, B. Salik, and A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12, 2446–2457 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited