OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 10 — Apr. 1, 2002
  • pp: 2015–2019

Compact method for optical induction of proximal probe heating and elongation

Andres H. La Rosa and Hans D. Hallen  »View Author Affiliations

Applied Optics, Vol. 41, Issue 10, pp. 2015-2019 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tapered, metal-coated, optical fiber probe will elongate when heated by light input through a fiber. The induced motion can be used for data storage or nanostructuring of a surface. The elongation produced by this alignment-free system is measured with force feedback in a near-field scanning optical microscope (NSOM). The input light intensity controls the elongation magnitude, which ranges from a few nanometers to more than 100 nm. A 0.5-mW input energy yields ∼20 nm of probe elongation. The elongation quantified here can create artifacts in any experiment using pulsed laser light with a NSOM or an atomic force microscope.

© 2002 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(230.4000) Optical devices : Microstructure fabrication
(260.2160) Physical optics : Energy transfer
(260.3060) Physical optics : Infrared
(260.3910) Physical optics : Metal optics
(350.1820) Other areas of optics : Damage

Original Manuscript: November 17, 2000
Revised Manuscript: November 16, 2001
Published: April 1, 2002

Andres H. La Rosa and Hans D. Hallen, "Compact method for optical induction of proximal probe heating and elongation," Appl. Opt. 41, 2015-2019 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990). [CrossRef]
  2. Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993). [CrossRef]
  3. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991). [CrossRef] [PubMed]
  4. H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990). [CrossRef] [PubMed]
  5. H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991). [CrossRef]
  6. H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992). [CrossRef] [PubMed]
  7. C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992). [CrossRef]
  8. S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994). [CrossRef]
  9. R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990). [CrossRef] [PubMed]
  10. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  11. S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996). [CrossRef]
  12. P. K Wei, R. Hang, J. H. Hsu, S. H. Lin, W. S. Fann, B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996). [CrossRef]
  13. S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000). [CrossRef]
  14. S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000). [CrossRef] [PubMed]
  15. H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992). [CrossRef]
  16. S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994). [CrossRef]
  17. D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996). [CrossRef]
  18. A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995). [CrossRef]
  19. P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999). [CrossRef]
  20. V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000). [CrossRef]
  21. B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995). [CrossRef]
  22. M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996). [CrossRef]
  23. M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).
  24. J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994). [CrossRef]
  25. E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993). [CrossRef]
  26. J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995). [CrossRef] [PubMed]
  27. P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995). [CrossRef]
  28. A. La Rosa, H. D. Hallen, “Heat effects on the performance of near-field scanning optical microscopy probes as Fabry-Perot mirrors,” presented at the American Physical Society Northwest Section Annual Meeting, Eugene, Oreg., 19–20 May 2000.
  29. B. Biehler, “Characterization of thermal probe elongation in near-field optical microscopy,” M.S. thesis (Physics Department, Portland State University, Portland, Oreg., 2001).
  30. G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999). [CrossRef]
  31. M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000). [CrossRef]
  32. D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited