OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2318–2327

Optical trapping near resonance absorption

Rodney R. Agayan, Frederick Gittes, Raoul Kopelman, and Christoph F. Schmidt  »View Author Affiliations

Applied Optics, Vol. 41, Issue 12, pp. 2318-2327 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Expressions for radiation-induced forces are presented for the case of a Rayleigh particle near the focus of a Gaussian laser beam at near-resonant conditions. Classical electromagnetic theory was used to obtain the dependence of the scattering and gradient forces on the incident laser frequency, the beam convergence angle, and the spatial position of the particle with respect to the focus. Approximative numerical analysis performed for particles with a single resonant absorption peak demonstrates the occurrence of up to 50-fold enhanced trapping forces at near-resonant frequencies. The use of this technique of gradient force enhancement may provide optical tweezers with enhanced trapping strengths and a degree of specificity.

© 2002 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.4760) Materials : Optical properties
(170.0180) Medical optics and biotechnology : Microscopy
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance

Original Manuscript: July 27, 2001
Revised Manuscript: December 10, 2001
Published: April 20, 2002

Rodney R. Agayan, Frederick Gittes, Raoul Kopelman, and Christoph F. Schmidt, "Optical trapping near resonance absorption," Appl. Opt. 41, 2318-2327 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978). [CrossRef]
  3. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef] [PubMed]
  4. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997). [CrossRef] [PubMed]
  5. M. P. Sheetz, ed., Laser Tweezers in Cell Biology, Vol. 55 of Methods in Cell Biology Series (Academic, New York, 1998).
  6. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  7. K. Sasaki, Z. Y. Shi, R. Kopelman, H. Masuhara, “Three-dimensional pH microprobing with an optically-manipulated fluorescent particle,” Chem. Lett. (2) 141–142 (1996).
  8. F. Gittes, C. F. Schmidt, “Thermal noise limitations on micromechanical experiments,” Eur. Biophys. J. Biophys. Lett. 27, 75–81 (1998). [CrossRef]
  9. A. Ashkin, “Atomic-beam deflection by resonance-radiation pressure,” Phys. Rev. Lett. 25, 1321–1324 (1970). [CrossRef]
  10. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  11. J. P. Gordon, A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980). [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  13. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  14. A. Ashkin, J. M. Dziedzic, P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276–278 (1982). [CrossRef] [PubMed]
  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  16. K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [CrossRef] [PubMed]
  17. J. E. Bjorkholm, R. R. Freeman, A. Ashkin, D. B. Pearson, “Observation of focusing of neutral atoms by dipole forces of resonance-radiation pressure,” Phys. Rev. Lett. 41, 1361–1364 (1978). [CrossRef]
  18. S. Chu, J. E. Bjorkholm, A. Ashkin, A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef] [PubMed]
  19. P. Meystre, M. Sargent, Elements of Quantum Optics (Springer, New York, 1999). [CrossRef]
  20. A. Ashkin, J. P. Gordon, “Stability of radiation-pressure particle traps: an optical Earnshaw theorem,” Opt. Lett. 8, 511–513 (1983). [CrossRef] [PubMed]
  21. P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  22. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  23. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  24. A. Yariv, Quantum Electronics (Wiley, New York, 1989).
  25. J. P. Barton, D. R. Alexander, “5th-order corrected electromagnetic-field components for a fundamental Gaussian-beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  26. P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988).
  27. A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).
  28. L. D. Landau, E. M. Lifshitz, “Course of theoretical physics,” in Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1960), Vol. 8, pp. 280–281.
  29. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders, New York, 1976).
  30. R. Loudon, The Quantum Theory of Light (Oxford U. Press, New York, 1973).
  31. D. C. Cronemeyer, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703–1706 (1966). [CrossRef]
  32. C. D. Keefe, “Curvefitting imaginary components of optical properties: restrictions on the lineshape due to causality,”J. Mol. Spectrosc. 205, 261–268 (2001). [CrossRef] [PubMed]
  33. W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, 1992).
  34. E. J. G. Peterman, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, Netherlands, F. Gittes, C. F. Schmidt are preparing a manuscript to be called “Laser-induced heating in optical traps.”
  35. Goodfellow Cambridge Limited, “Ruby,” (2001), http://www.goodfellow.com/static/e/aj60.html .
  36. G. M. Hale, M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited