OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2760–2767

Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar

Zhaoyan Liu, Nobuo Sugimoto, and Toshiyuki Murayama  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2760-2767 (2002)
http://dx.doi.org/10.1364/AO.41.002760


View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extinction-to-backscatter ratio or lidar ratio is a key parameter in the issue of backscatter-lidar inversions. The lidar ratio of Asian dust was observed with a high-spectral-resolution lidar and a combined Raman elastic-backscatter lidar during the springs of 1998 and 1999. The measured values range from 42 to 55 sr in most cases, with a mean of 51 sr. These values are significantly larger than those predicted by the Mie computations that incorporate measured Asian dust size distributions and a range of refractive index with a typical value of 1.55–0.005i. The enhancement of lidar ratio is mostly due to the nonsphericity of dust particles, as indicated by the T-matrix calculations for spheroid particles and a number of other theoretical studies. In addition, possible contamination of urban aerosols may also contribute somewhat in optically thin cases. Mie theory, although it can well describe spherical particle scattering, will not be sufficient to represent the scattering characteristics of irregular particles such as Asian dust, especially in directions larger than approximately 90°,when the size parameter is large.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.1310) Scattering : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: August 28, 2001
Revised Manuscript: January 9, 2002
Published: May 20, 2002

Citation
Zhaoyan Liu, Nobuo Sugimoto, and Toshiyuki Murayama, "Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar," Appl. Opt. 41, 2760-2767 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2760


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972). [CrossRef]
  2. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  3. Y. Sasano, H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11–12 (1984). [CrossRef]
  4. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  5. K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992). [CrossRef]
  6. S. A. Young, “Analysis of lidar backscatter profiles in optical thin clouds,” Appl. Opt. 30, 7019–7031 (1995). [CrossRef]
  7. D. Winker, “Global observations of aerosols and clouds from combined lidar and passive instruments to improve radiation budget and climate studies,” Earth Obs. 11, 22–25 (1999).
  8. Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system,” Appl. Opt. 39, 3120–3137 (2000). [CrossRef]
  9. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  10. A. Ansmann, M. Riebessell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28, 1992. [CrossRef]
  11. Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999). [CrossRef]
  12. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999). [CrossRef]
  13. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18,345–18,359 (2001). [CrossRef]
  14. G. E. Shaw, “Transport of Asian desert aerosol to the Hawaiian Islands,” J. Appl. Meteorol. 19, 1254–1259 (1980). [CrossRef]
  15. J. R. Parrington, W. H. Zoller, N. K. Aras, “Asian dust: seasonal transport to the Hawaiian Islands,” Science 220, 195–197 (1983). [CrossRef] [PubMed]
  16. M. Uematsu, R. A. Duce, J. M. Prospero, L. Chen, J. T. Merrill, R. L. McDonald, “Transport of mineral aerosol from Asia over the North Pacific Ocean,” J. Geophys. Res. 88, 5343–5352 (1983). [CrossRef]
  17. Y. Iwasaka, H. Minoura, K. Nagaya, “The transport and spatial scale of Asian dust-storm clouds: a case study of the dust-storm event of April 1979,” Tellus B 35, 189–196 (1983). [CrossRef]
  18. A. C. Holland, G. Gagne, “The scattering of polarized light by polydisperse systems of irregular particles,” Appl. Opt. 9, 1113–1121 (1970). [CrossRef] [PubMed]
  19. R. H. Zerull, R. H. Giese, K. Weiss, “Scattering functions of nonspherical dielectric and absorbing particles vs. Mie theory,” Appl. Opt. 16, 777–778 (1977). [PubMed]
  20. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978). [CrossRef] [PubMed]
  21. R. G. Pinnick, D. E. Carroll, D. J. Hofmann, “Polarized light scattered from monodisperse randomly oriented nonspherical aerosols: measurements,” Appl. Opt. 15, 384–393 (1976). [CrossRef] [PubMed]
  22. S. C. Hill, C. Hill, P. W. Barber, “Light scattering by size/shape distribution of soil particles and spheroids,” Appl. Opt. 23, 1025–1031 (1984). [CrossRef]
  23. G. W. Grams, I. H. Blifford, D. A. Gillette, P. B. Russell, “Complex index of refraction of air borne soil particles,” J. Appl. Meteor. 13, 459–471 (1974). [CrossRef]
  24. T. Nakajima, M. Tanaka, M. Yamamoto, M. Shiobara, K. Arao, Y. Nakanishi, “Aerosol optical characteristics in the Yellow Sand events observed in May, 1982 at Nagasaki-Pat II models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  25. J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997). [CrossRef]
  26. J. B. Pollack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 861–881 (1980). [CrossRef]
  27. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  28. A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles. 3. Variability in angular scattering patterns,” Appl. Opt. 28, 3061–3073 (1989). [CrossRef] [PubMed]
  29. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase function for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16,831–16,847 (1997). [CrossRef]
  30. S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar raio for atmospheric aerosols with a 180° backscatter nephelometer,” Appl. Opt. 38, 1823–1832 (1999). [CrossRef]
  31. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  32. A. Kobayashi, S. Hayashida, K. Okada, Y. Iwasaka, “Measurements of the polarization properties of KOSA (Asian dust storm) particles by a laser radar in spring 1983,” J. Meteorol. Soc. Jpn. 63, 144–149 (1985).
  33. A. Weber, S. P. S. Porto, L. E. Cheesman, J. J. Barrett, “High-resolution Raman spectroscopy of gases with cw-laser excitation,” J. Opt. Soc. Am. 57, 9–28 (1967). [CrossRef]
  34. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosols: a numerical study,” J. Atmos. Oceanic Technol. 15, 1043–1050 (1998). [CrossRef]
  35. K. Arao, Y. Ishizaka, “Volume and mass of yellow sand dust in the air over Japan as estimated from atmospheric turbidity,” J. Meteorol. Soc. Jpn. 64, 79–94 (1986).
  36. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef] [PubMed]
  37. H. Fukushima, M. Toratani, H. Kobayashi, W. Takahashi, A. Tanaka, B.-J. Sohn, “Atmospheric correction algorithm for satellite ocean color data over the Asian waters,” in Advances in X-Ray Optics, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, S. Oestreich, eds., Proc. SPIE4145, 18–30 (2000).
  38. K. Okada, A. Kobayashi, Y. Iwasaka, H. Naruse, T. Tanaka, O. Nemoto, “Features of individual Asian dust-storm paticles collected at Nagoya, Japan,” J. Meteorol. Soc. Jpn. 65, 515–521 (1987).
  39. M. I. Mishchenko, L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  40. Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999). [CrossRef]
  41. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Muller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27, 963–966 (2000). [CrossRef]
  42. A. P. Waggoner, N. C. Ahlquist, R. J. Charlson, “Measurement of the aerosol total scatter-backscatter,” Appl. Opt. 11, 2886–2889 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited