OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3336–3342

Parallel Fluorescence Detection of Single Biomolecules in Microarrays by a Diffractive-Optical-Designed 2 x 2 Fan-Out Element

Hans Blom, Mathias Johansson, Anna-Sara Hedman, Liselotte Lundberg, Anders Hanning, Sverker Hård, and Rudolf Rigler  »View Author Affiliations


Applied Optics, Vol. 41, Issue 16, pp. 3336-3342 (2002)
http://dx.doi.org/10.1364/AO.41.003336


View Full Text Article

Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a multifocal diffractive-optical fluorescence correlation spectroscopy system for parallel excitation and detection of single tetramethylrhodamine biomolecules in microarrays. Multifocal excitation was made possible through the use of a 2 × 2 fan-out diffractive-optical element with uniform intensity in all foci. Characterization of the 2 × 2 fan-out diffractive-optical element shows formation of almost perfect Gaussian foci of submicrometer lateral diameter, as analyzed by thermal motion of tetramethylrhodamine dye molecules in solution. Results of parallel excitation and detection in a high-density microarray of circular wells show single-biomolecule sensitivity in all four foci simultaneously.

© 2002 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced

Citation
Hans Blom, Mathias Johansson, Anna-Sara Hedman, Liselotte Lundberg, Anders Hanning, Sverker Hård, and Rudolf Rigler, "Parallel Fluorescence Detection of Single Biomolecules in Microarrays by a Diffractive-Optical-Designed 2 x 2 Fan-Out Element," Appl. Opt. 41, 3336-3342 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-16-3336


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
  2. D. Whitecomb, C. R. Newton, and S. Little, “Advantages in approaches to DNA-based diagnostics,” Curr. Opin. Biotechnol. 9, 602–608 (1998).
  3. N. S. Gray, L. Wodicka, A.-M. W. H. Thunnissen, T. C. Norman, S. Kwon, F. H. Espinoza, D. O. Morgan, G. Barnes, S. LeClerc, L. Meijer, S.-H. Kim, D. J. Lockhart, and P. G. Schultz, “Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors,” Science 281, 533–538 (1998).
  4. M. J. Marton, J. L. DeRisi, H. A. Bennett, V. R. Iyer, M. R. Meyer, C. J. Roberts, R. Stoughton, J. Burchard, D. Slade, H. Dai, D. E. Bassett, L. H. Hartwell, P. O. Brown, and S. H. Friend, “Drug target validation and identification of secondary drug target effects using DNA microarrays,” Nat. Med. (N.Y.) 4, 1293–1301 (1998).
  5. A. Holmberg, “DNA-microarrays: novel techniques to study aging and guide gerentologic medicine,” Exp. Gerentol. 36, 1189–1198 (2000).
  6. D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and DNA arrays,” Nature (London) 405, 827–836 (2000).
  7. G. McGall, J. Labadie, P. Brock, G. Wallraff, T. Nguyen, and W. Hinsberg, “Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists,” Proc. Natl. Acad. Sci. USA 93, 13555–13560 (1996).
  8. S. A. Fodor, “DNA sequencing: massively parallel genomics,” Science 277, 393–395 (1997).
  9. M. Schena and R. W. Davis, “Genes, genomes and chips,” in DNA Microarrays: A Practical Approach, M. Schena, ed. (Oxford U. Press, Oxford, UK, 1999).
  10. V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs, “Making and reading microarrays,” Nature Genet. Suppl. 2, 15–19 (1999).
  11. D. R. Walt, “Bead based fiber-optical arrays,” Science 287, 451–452 (2000).
  12. D. G. Wang, J.-B. Fang, C.-J. Siao, A. Berno, P. Young, R. Sopolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbel, F. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshuts, M. Chee, and E. S. Lander, “Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome,” Science 280, 1077–1082 (1998).
  13. R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart, “High density synthetic oligonucleotide arrays,” Nature Genet. 21, 20–24 (1999).
  14. R. A. Keller, W. P. Ambrose, P. M. Goodwin, J. H. Jett, J. C. Martin, and W. Ming, “Single-molecule fluorescence analysis in solution,” Appl. Spectrosc. 50, 12A–32A (1996).
  15. S. J. Brinac Jr., R. Gangadharan, M. MacMahon, J. Denman, R. Gonzales, L. G. Mendoza, and M. Eggers, “A proximal CCD imaging system for high-throughput detection of microarray-based assays,” IEEE Eng. Med. Biol. Mag. 18, 120–122 (1999).
  16. F. J. Steemers, J. A. Ferguson, and D. R. Walt, “Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays,” Nat. Biotechnol. 18, 91–94 (2000).
  17. D. S. Mehta, C. Y. Lee, and A. Chiou, “Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays,” Opt. Commun. 190, 59–68 (2001).
  18. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solutions,” Biophys. J. 72, 1878–1886 (1997).
  19. M. Sauer, B. Angerer, W. Ankenbauer, Z. Földes-Papp, F. Göbel, K.-T. Han, R. Rigler, A. Schultz, J. Wolfrum, and C. Zanders, “Single molecule DNA sequencing in submicrometer channels: State of the art and future prospects,” J. Biotechnol. 86, 181–201 (2001).
  20. D. P. Herten, P. Tinnenfeld, and M. Sauer, “Identification of single fluorescently labelled mononucleotide molecules in solution by spectrally resolved time-correlated single photon counting,” Appl. Phys. B 71, 765–771 (2000).
  21. M. Eigen and R. Rigler, “Sorting single molecules: application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994).
  22. Y. Chen, J. D. Müller, S. Y. Tetin, J. D. Tyner, and E. Gratton, “Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy,” Biophys. J. 79, 1074–1084 (2000).
  23. P. Kask, K. Palo, D. Ullmann, and K. Gall, “Fluorescence-intensity distribution analysis and its application in biomolecular detection technology,” Proc. Natl. Acad. Sci. USA 96, 13756–13761 (1999).
  24. J. Uppenbrink and D. Clery, “Single molecules,” Science 283, 1667–1695 (1999).
  25. See papers in Fluorescence Correlation Spectroscopy-Theory and Applications, R. Rigler and E. S. Elson, eds. (Springer-Verlag, Berlin, Heidelberg, 2001).
  26. M. W. Farn, “New iterative algorithm for the design of phase-only gratings,” in Computer and Optically Generated Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1555, 34–42 (1991).
  27. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. 1. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
  28. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational motion,” Eur. Biophys. J. 22, 169–175 (1993).
  29. M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23, 1795–1799 (1995).
  30. L. O. Tjernberg, A. Pramanik, S. Björling, P. Thyberg, J. Thyberg, C. Nordstedt, K. D. Berndt, and R. Rigler, “Amyloid β-peptide polymerisation studied using fluorescence correlation spectroscopy,” Chem. Biol. 6, 53–62 (1999).
  31. L. Edman, Ü. Mets, and R. Rigler, “Conformational transitions monitored for single molecules in solution,” Proc. Natl. Acad. Sci. USA 93, 6710–6715 (1996).
  32. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368–13379 (1995).
  33. J. Bengtsson and M. Johansson, “Fan-out diffractive optical elements designed for increased fabrication tolerances to linear relief depth errors,” Appl. Opt. 41, 281–289 (2002).
  34. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of VCSEL and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
  35. M. Larson, M. Ekberg, F. Nikolajeff, and S. Härd, “Successive development optimization of resist kinoforms manufactured with direct electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited